FFmpeg  3.4.9
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bgmc.h"
35 #include "bswapdsp.h"
36 #include "internal.h"
37 #include "mlz.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
41 #include "libavutil/intfloat.h"
42 #include "libavutil/intreadwrite.h"
43 
44 #include <stdint.h>
45 
46 /** Rice parameters and corresponding index offsets for decoding the
47  * indices of scaled PARCOR values. The table chosen is set globally
48  * by the encoder and stored in ALSSpecificConfig.
49  */
50 static const int8_t parcor_rice_table[3][20][2] = {
51  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
53  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
54  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
55  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
59  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
63 };
64 
65 
66 /** Scaled PARCOR values used for the first two PARCOR coefficients.
67  * To be indexed by the Rice coded indices.
68  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69  * Actual values are divided by 32 in order to be stored in 16 bits.
70  */
71 static const int16_t parcor_scaled_values[] = {
72  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
77  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
78  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
79  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
80  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
81  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
82  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
83  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
84  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
85  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
86  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
87  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
88  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
89  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
90  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
91  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
92  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
93  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
94  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
95  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
96  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
97  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
98  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
99  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
100  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
101  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
102  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
103  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
104 };
105 
106 
107 /** Gain values of p(0) for long-term prediction.
108  * To be indexed by the Rice coded indices.
109  */
110 static const uint8_t ltp_gain_values [4][4] = {
111  { 0, 8, 16, 24},
112  {32, 40, 48, 56},
113  {64, 70, 76, 82},
114  {88, 92, 96, 100}
115 };
116 
117 
118 /** Inter-channel weighting factors for multi-channel correlation.
119  * To be indexed by the Rice coded indices.
120  */
121 static const int16_t mcc_weightings[] = {
122  204, 192, 179, 166, 153, 140, 128, 115,
123  102, 89, 76, 64, 51, 38, 25, 12,
124  0, -12, -25, -38, -51, -64, -76, -89,
125  -102, -115, -128, -140, -153, -166, -179, -192
126 };
127 
128 
129 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130  */
131 static const uint8_t tail_code[16][6] = {
132  { 74, 44, 25, 13, 7, 3},
133  { 68, 42, 24, 13, 7, 3},
134  { 58, 39, 23, 13, 7, 3},
135  {126, 70, 37, 19, 10, 5},
136  {132, 70, 37, 20, 10, 5},
137  {124, 70, 38, 20, 10, 5},
138  {120, 69, 37, 20, 11, 5},
139  {116, 67, 37, 20, 11, 5},
140  {108, 66, 36, 20, 10, 5},
141  {102, 62, 36, 20, 10, 5},
142  { 88, 58, 34, 19, 10, 5},
143  {162, 89, 49, 25, 13, 7},
144  {156, 87, 49, 26, 14, 7},
145  {150, 86, 47, 26, 14, 7},
146  {142, 84, 47, 26, 14, 7},
147  {131, 79, 46, 26, 14, 7}
148 };
149 
150 
151 enum RA_Flag {
155 };
156 
157 
158 typedef struct ALSSpecificConfig {
159  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
160  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
162  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163  int frame_length; ///< frame length for each frame (last frame may differ)
164  int ra_distance; ///< distance between RA frames (in frames, 0...255)
165  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
166  int adapt_order; ///< adaptive order: 1 = on, 0 = off
167  int coef_table; ///< table index of Rice code parameters
168  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169  int max_order; ///< maximum prediction order (0..1023)
170  int block_switching; ///< number of block switching levels
171  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172  int sb_part; ///< sub-block partition
173  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
174  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175  int chan_config; ///< indicates that a chan_config_info field is present
176  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
177  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179  int *chan_pos; ///< original channel positions
180  int crc_enabled; ///< enable Cyclic Redundancy Checksum
182 
183 
184 typedef struct ALSChannelData {
190  int weighting[6];
192 
193 
194 typedef struct ALSDecContext {
199  const AVCRC *crc_table;
200  uint32_t crc_org; ///< CRC value of the original input data
201  uint32_t crc; ///< CRC value calculated from decoded data
202  unsigned int cur_frame_length; ///< length of the current frame to decode
203  unsigned int frame_id; ///< the frame ID / number of the current frame
204  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
205  unsigned int cs_switch; ///< if true, channel rearrangement is done
206  unsigned int num_blocks; ///< number of blocks used in the current frame
207  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
208  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
209  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
210  int ltp_lag_length; ///< number of bits used for ltp lag value
211  int *const_block; ///< contains const_block flags for all channels
212  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
213  unsigned int *opt_order; ///< contains opt_order flags for all channels
214  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
215  int *use_ltp; ///< contains use_ltp flags for all channels
216  int *ltp_lag; ///< contains ltp lag values for all channels
217  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
218  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
219  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
220  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
221  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
222  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
223  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
225  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226  int *reverted_channels; ///< stores a flag for each reverted channel
227  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
228  int32_t **raw_samples; ///< decoded raw samples for each channel
229  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
230  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
231  MLZ* mlz; ///< masked lz decompression structure
232  SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
233  int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
234  int *shift_value; ///< value by which the binary point is to be shifted for all channels
235  int *last_shift_value; ///< contains last shift value for all channels
236  int **raw_mantissa; ///< decoded mantissa bits of the difference signal
237  unsigned char *larray; ///< buffer to store the output of masked lz decompression
238  int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
239 } ALSDecContext;
240 
241 
242 typedef struct ALSBlockData {
243  unsigned int block_length; ///< number of samples within the block
244  unsigned int ra_block; ///< if true, this is a random access block
245  int *const_block; ///< if true, this is a constant value block
246  int js_blocks; ///< true if this block contains a difference signal
247  unsigned int *shift_lsbs; ///< shift of values for this block
248  unsigned int *opt_order; ///< prediction order of this block
249  int *store_prev_samples;///< if true, carryover samples have to be stored
250  int *use_ltp; ///< if true, long-term prediction is used
251  int *ltp_lag; ///< lag value for long-term prediction
252  int *ltp_gain; ///< gain values for ltp 5-tap filter
253  int32_t *quant_cof; ///< quantized parcor coefficients
254  int32_t *lpc_cof; ///< coefficients of the direct form prediction
255  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
256  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
257  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
258 } ALSBlockData;
259 
260 
262 {
263 #ifdef DEBUG
264  AVCodecContext *avctx = ctx->avctx;
265  ALSSpecificConfig *sconf = &ctx->sconf;
266 
267  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
268  ff_dlog(avctx, "floating = %i\n", sconf->floating);
269  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
270  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
271  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
272  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
273  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
274  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
275  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
276  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
277  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
278  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
279  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
280  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
281  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
282  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
283  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
284  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
285 #endif
286 }
287 
288 
289 /** Read an ALSSpecificConfig from a buffer into the output struct.
290  */
292 {
293  GetBitContext gb;
294  uint64_t ht_size;
295  int i, config_offset;
296  MPEG4AudioConfig m4ac = {0};
297  ALSSpecificConfig *sconf = &ctx->sconf;
298  AVCodecContext *avctx = ctx->avctx;
299  uint32_t als_id, header_size, trailer_size;
300  int ret;
301 
302  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
303  return ret;
304 
305  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
306  avctx->extradata_size * 8, 1);
307 
308  if (config_offset < 0)
309  return AVERROR_INVALIDDATA;
310 
311  skip_bits_long(&gb, config_offset);
312 
313  if (get_bits_left(&gb) < (30 << 3))
314  return AVERROR_INVALIDDATA;
315 
316  // read the fixed items
317  als_id = get_bits_long(&gb, 32);
318  avctx->sample_rate = m4ac.sample_rate;
319  skip_bits_long(&gb, 32); // sample rate already known
320  sconf->samples = get_bits_long(&gb, 32);
321  avctx->channels = m4ac.channels;
322  skip_bits(&gb, 16); // number of channels already known
323  skip_bits(&gb, 3); // skip file_type
324  sconf->resolution = get_bits(&gb, 3);
325  sconf->floating = get_bits1(&gb);
326  sconf->msb_first = get_bits1(&gb);
327  sconf->frame_length = get_bits(&gb, 16) + 1;
328  sconf->ra_distance = get_bits(&gb, 8);
329  sconf->ra_flag = get_bits(&gb, 2);
330  sconf->adapt_order = get_bits1(&gb);
331  sconf->coef_table = get_bits(&gb, 2);
332  sconf->long_term_prediction = get_bits1(&gb);
333  sconf->max_order = get_bits(&gb, 10);
334  sconf->block_switching = get_bits(&gb, 2);
335  sconf->bgmc = get_bits1(&gb);
336  sconf->sb_part = get_bits1(&gb);
337  sconf->joint_stereo = get_bits1(&gb);
338  sconf->mc_coding = get_bits1(&gb);
339  sconf->chan_config = get_bits1(&gb);
340  sconf->chan_sort = get_bits1(&gb);
341  sconf->crc_enabled = get_bits1(&gb);
342  sconf->rlslms = get_bits1(&gb);
343  skip_bits(&gb, 5); // skip 5 reserved bits
344  skip_bits1(&gb); // skip aux_data_enabled
345 
346 
347  // check for ALSSpecificConfig struct
348  if (als_id != MKBETAG('A','L','S','\0'))
349  return AVERROR_INVALIDDATA;
350 
351  if (avctx->channels > FF_SANE_NB_CHANNELS) {
352  avpriv_request_sample(avctx, "Huge number of channels\n");
353  return AVERROR_PATCHWELCOME;
354  }
355 
356  ctx->cur_frame_length = sconf->frame_length;
357 
358  // read channel config
359  if (sconf->chan_config)
360  sconf->chan_config_info = get_bits(&gb, 16);
361  // TODO: use this to set avctx->channel_layout
362 
363 
364  // read channel sorting
365  if (sconf->chan_sort && avctx->channels > 1) {
366  int chan_pos_bits = av_ceil_log2(avctx->channels);
367  int bits_needed = avctx->channels * chan_pos_bits + 7;
368  if (get_bits_left(&gb) < bits_needed)
369  return AVERROR_INVALIDDATA;
370 
371  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
372  return AVERROR(ENOMEM);
373 
374  ctx->cs_switch = 1;
375 
376  for (i = 0; i < avctx->channels; i++) {
377  sconf->chan_pos[i] = -1;
378  }
379 
380  for (i = 0; i < avctx->channels; i++) {
381  int idx;
382 
383  idx = get_bits(&gb, chan_pos_bits);
384  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
385  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
386  ctx->cs_switch = 0;
387  break;
388  }
389  sconf->chan_pos[idx] = i;
390  }
391 
392  align_get_bits(&gb);
393  }
394 
395 
396  // read fixed header and trailer sizes,
397  // if size = 0xFFFFFFFF then there is no data field!
398  if (get_bits_left(&gb) < 64)
399  return AVERROR_INVALIDDATA;
400 
401  header_size = get_bits_long(&gb, 32);
402  trailer_size = get_bits_long(&gb, 32);
403  if (header_size == 0xFFFFFFFF)
404  header_size = 0;
405  if (trailer_size == 0xFFFFFFFF)
406  trailer_size = 0;
407 
408  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
409 
410 
411  // skip the header and trailer data
412  if (get_bits_left(&gb) < ht_size)
413  return AVERROR_INVALIDDATA;
414 
415  if (ht_size > INT32_MAX)
416  return AVERROR_PATCHWELCOME;
417 
418  skip_bits_long(&gb, ht_size);
419 
420 
421  // initialize CRC calculation
422  if (sconf->crc_enabled) {
423  if (get_bits_left(&gb) < 32)
424  return AVERROR_INVALIDDATA;
425 
428  ctx->crc = 0xFFFFFFFF;
429  ctx->crc_org = ~get_bits_long(&gb, 32);
430  } else
431  skip_bits_long(&gb, 32);
432  }
433 
434 
435  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
436 
438 
439  return 0;
440 }
441 
442 
443 /** Check the ALSSpecificConfig for unsupported features.
444  */
446 {
447  ALSSpecificConfig *sconf = &ctx->sconf;
448  int error = 0;
449 
450  // report unsupported feature and set error value
451  #define MISSING_ERR(cond, str, errval) \
452  { \
453  if (cond) { \
454  avpriv_report_missing_feature(ctx->avctx, \
455  str); \
456  error = errval; \
457  } \
458  }
459 
460  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
461 
462  return error;
463 }
464 
465 
466 /** Parse the bs_info field to extract the block partitioning used in
467  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
468  */
469 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
470  unsigned int div, unsigned int **div_blocks,
471  unsigned int *num_blocks)
472 {
473  if (n < 31 && ((bs_info << n) & 0x40000000)) {
474  // if the level is valid and the investigated bit n is set
475  // then recursively check both children at bits (2n+1) and (2n+2)
476  n *= 2;
477  div += 1;
478  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
479  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
480  } else {
481  // else the bit is not set or the last level has been reached
482  // (bit implicitly not set)
483  **div_blocks = div;
484  (*div_blocks)++;
485  (*num_blocks)++;
486  }
487 }
488 
489 
490 /** Read and decode a Rice codeword.
491  */
492 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
493 {
494  int max = get_bits_left(gb) - k;
495  unsigned q = get_unary(gb, 0, max);
496  int r = k ? get_bits1(gb) : !(q & 1);
497 
498  if (k > 1) {
499  q <<= (k - 1);
500  q += get_bits_long(gb, k - 1);
501  } else if (!k) {
502  q >>= 1;
503  }
504  return r ? q : ~q;
505 }
506 
507 
508 /** Convert PARCOR coefficient k to direct filter coefficient.
509  */
510 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
511 {
512  int i, j;
513 
514  for (i = 0, j = k - 1; i < j; i++, j--) {
515  unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
516  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
517  cof[i] += tmp1;
518  }
519  if (i == j)
520  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
521 
522  cof[k] = par[k];
523 }
524 
525 
526 /** Read block switching field if necessary and set actual block sizes.
527  * Also assure that the block sizes of the last frame correspond to the
528  * actual number of samples.
529  */
530 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
531  uint32_t *bs_info)
532 {
533  ALSSpecificConfig *sconf = &ctx->sconf;
534  GetBitContext *gb = &ctx->gb;
535  unsigned int *ptr_div_blocks = div_blocks;
536  unsigned int b;
537 
538  if (sconf->block_switching) {
539  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
540  *bs_info = get_bits_long(gb, bs_info_len);
541  *bs_info <<= (32 - bs_info_len);
542  }
543 
544  ctx->num_blocks = 0;
545  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
546 
547  // The last frame may have an overdetermined block structure given in
548  // the bitstream. In that case the defined block structure would need
549  // more samples than available to be consistent.
550  // The block structure is actually used but the block sizes are adapted
551  // to fit the actual number of available samples.
552  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
553  // This results in the actual block sizes: 2 2 1 0.
554  // This is not specified in 14496-3 but actually done by the reference
555  // codec RM22 revision 2.
556  // This appears to happen in case of an odd number of samples in the last
557  // frame which is actually not allowed by the block length switching part
558  // of 14496-3.
559  // The ALS conformance files feature an odd number of samples in the last
560  // frame.
561 
562  for (b = 0; b < ctx->num_blocks; b++)
563  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
564 
565  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
566  unsigned int remaining = ctx->cur_frame_length;
567 
568  for (b = 0; b < ctx->num_blocks; b++) {
569  if (remaining <= div_blocks[b]) {
570  div_blocks[b] = remaining;
571  ctx->num_blocks = b + 1;
572  break;
573  }
574 
575  remaining -= div_blocks[b];
576  }
577  }
578 }
579 
580 
581 /** Read the block data for a constant block
582  */
584 {
585  ALSSpecificConfig *sconf = &ctx->sconf;
586  AVCodecContext *avctx = ctx->avctx;
587  GetBitContext *gb = &ctx->gb;
588 
589  if (bd->block_length <= 0)
590  return AVERROR_INVALIDDATA;
591 
592  *bd->raw_samples = 0;
593  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
594  bd->js_blocks = get_bits1(gb);
595 
596  // skip 5 reserved bits
597  skip_bits(gb, 5);
598 
599  if (*bd->const_block) {
600  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
601  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
602  }
603 
604  // ensure constant block decoding by reusing this field
605  *bd->const_block = 1;
606 
607  return 0;
608 }
609 
610 
611 /** Decode the block data for a constant block
612  */
614 {
615  int smp = bd->block_length - 1;
616  int32_t val = *bd->raw_samples;
617  int32_t *dst = bd->raw_samples + 1;
618 
619  // write raw samples into buffer
620  for (; smp; smp--)
621  *dst++ = val;
622 }
623 
624 
625 /** Read the block data for a non-constant block
626  */
628 {
629  ALSSpecificConfig *sconf = &ctx->sconf;
630  AVCodecContext *avctx = ctx->avctx;
631  GetBitContext *gb = &ctx->gb;
632  unsigned int k;
633  unsigned int s[8];
634  unsigned int sx[8];
635  unsigned int sub_blocks, log2_sub_blocks, sb_length;
636  unsigned int start = 0;
637  unsigned int opt_order;
638  int sb;
639  int32_t *quant_cof = bd->quant_cof;
640  int32_t *current_res;
641 
642 
643  // ensure variable block decoding by reusing this field
644  *bd->const_block = 0;
645 
646  *bd->opt_order = 1;
647  bd->js_blocks = get_bits1(gb);
648 
649  opt_order = *bd->opt_order;
650 
651  // determine the number of subblocks for entropy decoding
652  if (!sconf->bgmc && !sconf->sb_part) {
653  log2_sub_blocks = 0;
654  } else {
655  if (sconf->bgmc && sconf->sb_part)
656  log2_sub_blocks = get_bits(gb, 2);
657  else
658  log2_sub_blocks = 2 * get_bits1(gb);
659  }
660 
661  sub_blocks = 1 << log2_sub_blocks;
662 
663  // do not continue in case of a damaged stream since
664  // block_length must be evenly divisible by sub_blocks
665  if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
666  av_log(avctx, AV_LOG_WARNING,
667  "Block length is not evenly divisible by the number of subblocks.\n");
668  return AVERROR_INVALIDDATA;
669  }
670 
671  sb_length = bd->block_length >> log2_sub_blocks;
672 
673  if (sconf->bgmc) {
674  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
675  for (k = 1; k < sub_blocks; k++)
676  s[k] = s[k - 1] + decode_rice(gb, 2);
677 
678  for (k = 0; k < sub_blocks; k++) {
679  sx[k] = s[k] & 0x0F;
680  s [k] >>= 4;
681  }
682  } else {
683  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
684  for (k = 1; k < sub_blocks; k++)
685  s[k] = s[k - 1] + decode_rice(gb, 0);
686  }
687  for (k = 1; k < sub_blocks; k++)
688  if (s[k] > 32) {
689  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
690  return AVERROR_INVALIDDATA;
691  }
692 
693  if (get_bits1(gb))
694  *bd->shift_lsbs = get_bits(gb, 4) + 1;
695 
696  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
697 
698 
699  if (!sconf->rlslms) {
700  if (sconf->adapt_order && sconf->max_order) {
701  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
702  2, sconf->max_order + 1));
703  *bd->opt_order = get_bits(gb, opt_order_length);
704  if (*bd->opt_order > sconf->max_order) {
705  *bd->opt_order = sconf->max_order;
706  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
707  return AVERROR_INVALIDDATA;
708  }
709  } else {
710  *bd->opt_order = sconf->max_order;
711  }
712  if (*bd->opt_order > bd->block_length) {
713  *bd->opt_order = bd->block_length;
714  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
715  return AVERROR_INVALIDDATA;
716  }
717  opt_order = *bd->opt_order;
718 
719  if (opt_order) {
720  int add_base;
721 
722  if (sconf->coef_table == 3) {
723  add_base = 0x7F;
724 
725  // read coefficient 0
726  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
727 
728  // read coefficient 1
729  if (opt_order > 1)
730  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
731 
732  // read coefficients 2 to opt_order
733  for (k = 2; k < opt_order; k++)
734  quant_cof[k] = get_bits(gb, 7);
735  } else {
736  int k_max;
737  add_base = 1;
738 
739  // read coefficient 0 to 19
740  k_max = FFMIN(opt_order, 20);
741  for (k = 0; k < k_max; k++) {
742  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
743  int offset = parcor_rice_table[sconf->coef_table][k][0];
744  quant_cof[k] = decode_rice(gb, rice_param) + offset;
745  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
746  av_log(avctx, AV_LOG_ERROR,
747  "quant_cof %"PRId32" is out of range.\n",
748  quant_cof[k]);
749  return AVERROR_INVALIDDATA;
750  }
751  }
752 
753  // read coefficients 20 to 126
754  k_max = FFMIN(opt_order, 127);
755  for (; k < k_max; k++)
756  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
757 
758  // read coefficients 127 to opt_order
759  for (; k < opt_order; k++)
760  quant_cof[k] = decode_rice(gb, 1);
761 
762  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
763 
764  if (opt_order > 1)
765  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
766  }
767 
768  for (k = 2; k < opt_order; k++)
769  quant_cof[k] = (quant_cof[k] * (1U << 14)) + (add_base << 13);
770  }
771  }
772 
773  // read LTP gain and lag values
774  if (sconf->long_term_prediction) {
775  *bd->use_ltp = get_bits1(gb);
776 
777  if (*bd->use_ltp) {
778  int r, c;
779 
780  bd->ltp_gain[0] = decode_rice(gb, 1) * 8;
781  bd->ltp_gain[1] = decode_rice(gb, 2) * 8;
782 
783  r = get_unary(gb, 0, 4);
784  c = get_bits(gb, 2);
785  if (r >= 4) {
786  av_log(avctx, AV_LOG_ERROR, "r overflow\n");
787  return AVERROR_INVALIDDATA;
788  }
789 
790  bd->ltp_gain[2] = ltp_gain_values[r][c];
791 
792  bd->ltp_gain[3] = decode_rice(gb, 2) * 8;
793  bd->ltp_gain[4] = decode_rice(gb, 1) * 8;
794 
795  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
796  *bd->ltp_lag += FFMAX(4, opt_order + 1);
797  }
798  }
799 
800  // read first value and residuals in case of a random access block
801  if (bd->ra_block) {
802  start = FFMIN(opt_order, 3);
803  av_assert0(sb_length <= sconf->frame_length);
804  if (sb_length <= start) {
805  // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
806  av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
807  return AVERROR_PATCHWELCOME;
808  }
809 
810  if (opt_order)
811  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
812  if (opt_order > 1)
813  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
814  if (opt_order > 2)
815  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
816  }
817 
818  // read all residuals
819  if (sconf->bgmc) {
820  int delta[8];
821  unsigned int k [8];
822  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
823 
824  // read most significant bits
825  unsigned int high;
826  unsigned int low;
827  unsigned int value;
828 
829  int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
830  if (ret < 0)
831  return ret;
832 
833  current_res = bd->raw_samples + start;
834 
835  for (sb = 0; sb < sub_blocks; sb++) {
836  unsigned int sb_len = sb_length - (sb ? 0 : start);
837 
838  k [sb] = s[sb] > b ? s[sb] - b : 0;
839  delta[sb] = 5 - s[sb] + k[sb];
840 
841  if (k[sb] >= 32)
842  return AVERROR_INVALIDDATA;
843 
844  ff_bgmc_decode(gb, sb_len, current_res,
845  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
846 
847  current_res += sb_len;
848  }
849 
850  ff_bgmc_decode_end(gb);
851 
852 
853  // read least significant bits and tails
854  current_res = bd->raw_samples + start;
855 
856  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
857  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
858  unsigned int cur_k = k[sb];
859  unsigned int cur_s = s[sb];
860 
861  for (; start < sb_length; start++) {
862  int32_t res = *current_res;
863 
864  if (res == cur_tail_code) {
865  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
866  << (5 - delta[sb]);
867 
868  res = decode_rice(gb, cur_s);
869 
870  if (res >= 0) {
871  res += (max_msb ) << cur_k;
872  } else {
873  res -= (max_msb - 1) << cur_k;
874  }
875  } else {
876  if (res > cur_tail_code)
877  res--;
878 
879  if (res & 1)
880  res = -res;
881 
882  res >>= 1;
883 
884  if (cur_k) {
885  res *= 1U << cur_k;
886  res |= get_bits_long(gb, cur_k);
887  }
888  }
889 
890  *current_res++ = res;
891  }
892  }
893  } else {
894  current_res = bd->raw_samples + start;
895 
896  for (sb = 0; sb < sub_blocks; sb++, start = 0)
897  for (; start < sb_length; start++)
898  *current_res++ = decode_rice(gb, s[sb]);
899  }
900 
901  return 0;
902 }
903 
904 
905 /** Decode the block data for a non-constant block
906  */
908 {
909  ALSSpecificConfig *sconf = &ctx->sconf;
910  unsigned int block_length = bd->block_length;
911  unsigned int smp = 0;
912  unsigned int k;
913  int opt_order = *bd->opt_order;
914  int sb;
915  int64_t y;
916  int32_t *quant_cof = bd->quant_cof;
917  int32_t *lpc_cof = bd->lpc_cof;
918  int32_t *raw_samples = bd->raw_samples;
919  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
920  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
921 
922  // reverse long-term prediction
923  if (*bd->use_ltp) {
924  int ltp_smp;
925 
926  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
927  int center = ltp_smp - *bd->ltp_lag;
928  int begin = FFMAX(0, center - 2);
929  int end = center + 3;
930  int tab = 5 - (end - begin);
931  int base;
932 
933  y = 1 << 6;
934 
935  for (base = begin; base < end; base++, tab++)
936  y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
937 
938  raw_samples[ltp_smp] += y >> 7;
939  }
940  }
941 
942  // reconstruct all samples from residuals
943  if (bd->ra_block) {
944  for (smp = 0; smp < opt_order; smp++) {
945  y = 1 << 19;
946 
947  for (sb = 0; sb < smp; sb++)
948  y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
949 
950  *raw_samples++ -= y >> 20;
951  parcor_to_lpc(smp, quant_cof, lpc_cof);
952  }
953  } else {
954  for (k = 0; k < opt_order; k++)
955  parcor_to_lpc(k, quant_cof, lpc_cof);
956 
957  // store previous samples in case that they have to be altered
958  if (*bd->store_prev_samples)
959  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
960  sizeof(*bd->prev_raw_samples) * sconf->max_order);
961 
962  // reconstruct difference signal for prediction (joint-stereo)
963  if (bd->js_blocks && bd->raw_other) {
964  uint32_t *left, *right;
965 
966  if (bd->raw_other > raw_samples) { // D = R - L
967  left = raw_samples;
968  right = bd->raw_other;
969  } else { // D = R - L
970  left = bd->raw_other;
971  right = raw_samples;
972  }
973 
974  for (sb = -1; sb >= -sconf->max_order; sb--)
975  raw_samples[sb] = right[sb] - left[sb];
976  }
977 
978  // reconstruct shifted signal
979  if (*bd->shift_lsbs)
980  for (sb = -1; sb >= -sconf->max_order; sb--)
981  raw_samples[sb] >>= *bd->shift_lsbs;
982  }
983 
984  // reverse linear prediction coefficients for efficiency
985  lpc_cof = lpc_cof + opt_order;
986 
987  for (sb = 0; sb < opt_order; sb++)
988  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
989 
990  // reconstruct raw samples
991  raw_samples = bd->raw_samples + smp;
992  lpc_cof = lpc_cof_reversed + opt_order;
993 
994  for (; raw_samples < raw_samples_end; raw_samples++) {
995  y = 1 << 19;
996 
997  for (sb = -opt_order; sb < 0; sb++)
998  y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
999 
1000  *raw_samples -= y >> 20;
1001  }
1002 
1003  raw_samples = bd->raw_samples;
1004 
1005  // restore previous samples in case that they have been altered
1006  if (*bd->store_prev_samples)
1007  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
1008  sizeof(*raw_samples) * sconf->max_order);
1009 
1010  return 0;
1011 }
1012 
1013 
1014 /** Read the block data.
1015  */
1017 {
1018  int ret;
1019  GetBitContext *gb = &ctx->gb;
1020  ALSSpecificConfig *sconf = &ctx->sconf;
1021 
1022  *bd->shift_lsbs = 0;
1023 
1024  if (get_bits_left(gb) < 1)
1025  return AVERROR_INVALIDDATA;
1026 
1027  // read block type flag and read the samples accordingly
1028  if (get_bits1(gb)) {
1029  ret = read_var_block_data(ctx, bd);
1030  } else {
1031  ret = read_const_block_data(ctx, bd);
1032  }
1033 
1034  if (!sconf->mc_coding || ctx->js_switch)
1035  align_get_bits(gb);
1036 
1037  return ret;
1038 }
1039 
1040 
1041 /** Decode the block data.
1042  */
1044 {
1045  unsigned int smp;
1046  int ret = 0;
1047 
1048  // read block type flag and read the samples accordingly
1049  if (*bd->const_block)
1050  decode_const_block_data(ctx, bd);
1051  else
1052  ret = decode_var_block_data(ctx, bd); // always return 0
1053 
1054  if (ret < 0)
1055  return ret;
1056 
1057  // TODO: read RLSLMS extension data
1058 
1059  if (*bd->shift_lsbs)
1060  for (smp = 0; smp < bd->block_length; smp++)
1061  bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1062 
1063  return 0;
1064 }
1065 
1066 
1067 /** Read and decode block data successively.
1068  */
1070 {
1071  int ret;
1072 
1073  if ((ret = read_block(ctx, bd)) < 0)
1074  return ret;
1075 
1076  return decode_block(ctx, bd);
1077 }
1078 
1079 
1080 /** Compute the number of samples left to decode for the current frame and
1081  * sets these samples to zero.
1082  */
1083 static void zero_remaining(unsigned int b, unsigned int b_max,
1084  const unsigned int *div_blocks, int32_t *buf)
1085 {
1086  unsigned int count = 0;
1087 
1088  while (b < b_max)
1089  count += div_blocks[b++];
1090 
1091  if (count)
1092  memset(buf, 0, sizeof(*buf) * count);
1093 }
1094 
1095 
1096 /** Decode blocks independently.
1097  */
1098 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1099  unsigned int c, const unsigned int *div_blocks,
1100  unsigned int *js_blocks)
1101 {
1102  int ret;
1103  unsigned int b;
1104  ALSBlockData bd = { 0 };
1105 
1106  bd.ra_block = ra_frame;
1107  bd.const_block = ctx->const_block;
1108  bd.shift_lsbs = ctx->shift_lsbs;
1109  bd.opt_order = ctx->opt_order;
1111  bd.use_ltp = ctx->use_ltp;
1112  bd.ltp_lag = ctx->ltp_lag;
1113  bd.ltp_gain = ctx->ltp_gain[0];
1114  bd.quant_cof = ctx->quant_cof[0];
1115  bd.lpc_cof = ctx->lpc_cof[0];
1117  bd.raw_samples = ctx->raw_samples[c];
1118 
1119 
1120  for (b = 0; b < ctx->num_blocks; b++) {
1121  bd.block_length = div_blocks[b];
1122 
1123  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1124  // damaged block, write zero for the rest of the frame
1125  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1126  return ret;
1127  }
1128  bd.raw_samples += div_blocks[b];
1129  bd.ra_block = 0;
1130  }
1131 
1132  return 0;
1133 }
1134 
1135 
1136 /** Decode blocks dependently.
1137  */
1138 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1139  unsigned int c, const unsigned int *div_blocks,
1140  unsigned int *js_blocks)
1141 {
1142  ALSSpecificConfig *sconf = &ctx->sconf;
1143  unsigned int offset = 0;
1144  unsigned int b;
1145  int ret;
1146  ALSBlockData bd[2] = { { 0 } };
1147 
1148  bd[0].ra_block = ra_frame;
1149  bd[0].const_block = ctx->const_block;
1150  bd[0].shift_lsbs = ctx->shift_lsbs;
1151  bd[0].opt_order = ctx->opt_order;
1153  bd[0].use_ltp = ctx->use_ltp;
1154  bd[0].ltp_lag = ctx->ltp_lag;
1155  bd[0].ltp_gain = ctx->ltp_gain[0];
1156  bd[0].quant_cof = ctx->quant_cof[0];
1157  bd[0].lpc_cof = ctx->lpc_cof[0];
1158  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1159  bd[0].js_blocks = *js_blocks;
1160 
1161  bd[1].ra_block = ra_frame;
1162  bd[1].const_block = ctx->const_block;
1163  bd[1].shift_lsbs = ctx->shift_lsbs;
1164  bd[1].opt_order = ctx->opt_order;
1166  bd[1].use_ltp = ctx->use_ltp;
1167  bd[1].ltp_lag = ctx->ltp_lag;
1168  bd[1].ltp_gain = ctx->ltp_gain[0];
1169  bd[1].quant_cof = ctx->quant_cof[0];
1170  bd[1].lpc_cof = ctx->lpc_cof[0];
1171  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1172  bd[1].js_blocks = *(js_blocks + 1);
1173 
1174  // decode all blocks
1175  for (b = 0; b < ctx->num_blocks; b++) {
1176  unsigned int s;
1177 
1178  bd[0].block_length = div_blocks[b];
1179  bd[1].block_length = div_blocks[b];
1180 
1181  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1182  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1183 
1184  bd[0].raw_other = bd[1].raw_samples;
1185  bd[1].raw_other = bd[0].raw_samples;
1186 
1187  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1188  (ret = read_decode_block(ctx, &bd[1])) < 0)
1189  goto fail;
1190 
1191  // reconstruct joint-stereo blocks
1192  if (bd[0].js_blocks) {
1193  if (bd[1].js_blocks)
1194  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1195 
1196  for (s = 0; s < div_blocks[b]; s++)
1197  bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1198  } else if (bd[1].js_blocks) {
1199  for (s = 0; s < div_blocks[b]; s++)
1200  bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
1201  }
1202 
1203  offset += div_blocks[b];
1204  bd[0].ra_block = 0;
1205  bd[1].ra_block = 0;
1206  }
1207 
1208  // store carryover raw samples,
1209  // the others channel raw samples are stored by the calling function.
1210  memmove(ctx->raw_samples[c] - sconf->max_order,
1211  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1212  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1213 
1214  return 0;
1215 fail:
1216  // damaged block, write zero for the rest of the frame
1217  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1218  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1219  return ret;
1220 }
1221 
1222 static inline int als_weighting(GetBitContext *gb, int k, int off)
1223 {
1224  int idx = av_clip(decode_rice(gb, k) + off,
1225  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1226  return mcc_weightings[idx];
1227 }
1228 
1229 /** Read the channel data.
1230  */
1232 {
1233  GetBitContext *gb = &ctx->gb;
1234  ALSChannelData *current = cd;
1235  unsigned int channels = ctx->avctx->channels;
1236  int entries = 0;
1237 
1238  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1239  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1240 
1241  if (current->master_channel >= channels) {
1242  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1243  return AVERROR_INVALIDDATA;
1244  }
1245 
1246  if (current->master_channel != c) {
1247  current->time_diff_flag = get_bits1(gb);
1248  current->weighting[0] = als_weighting(gb, 1, 16);
1249  current->weighting[1] = als_weighting(gb, 2, 14);
1250  current->weighting[2] = als_weighting(gb, 1, 16);
1251 
1252  if (current->time_diff_flag) {
1253  current->weighting[3] = als_weighting(gb, 1, 16);
1254  current->weighting[4] = als_weighting(gb, 1, 16);
1255  current->weighting[5] = als_weighting(gb, 1, 16);
1256 
1257  current->time_diff_sign = get_bits1(gb);
1258  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1259  }
1260  }
1261 
1262  current++;
1263  entries++;
1264  }
1265 
1266  if (entries == channels) {
1267  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1268  return AVERROR_INVALIDDATA;
1269  }
1270 
1271  align_get_bits(gb);
1272  return 0;
1273 }
1274 
1275 
1276 /** Recursively reverts the inter-channel correlation for a block.
1277  */
1279  ALSChannelData **cd, int *reverted,
1280  unsigned int offset, int c)
1281 {
1282  ALSChannelData *ch = cd[c];
1283  unsigned int dep = 0;
1284  unsigned int channels = ctx->avctx->channels;
1285  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1286 
1287  if (reverted[c])
1288  return 0;
1289 
1290  reverted[c] = 1;
1291 
1292  while (dep < channels && !ch[dep].stop_flag) {
1293  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1294  ch[dep].master_channel);
1295 
1296  dep++;
1297  }
1298 
1299  if (dep == channels) {
1300  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1301  return AVERROR_INVALIDDATA;
1302  }
1303 
1304  bd->const_block = ctx->const_block + c;
1305  bd->shift_lsbs = ctx->shift_lsbs + c;
1306  bd->opt_order = ctx->opt_order + c;
1308  bd->use_ltp = ctx->use_ltp + c;
1309  bd->ltp_lag = ctx->ltp_lag + c;
1310  bd->ltp_gain = ctx->ltp_gain[c];
1311  bd->lpc_cof = ctx->lpc_cof[c];
1312  bd->quant_cof = ctx->quant_cof[c];
1313  bd->raw_samples = ctx->raw_samples[c] + offset;
1314 
1315  for (dep = 0; !ch[dep].stop_flag; dep++) {
1316  ptrdiff_t smp;
1317  ptrdiff_t begin = 1;
1318  ptrdiff_t end = bd->block_length - 1;
1319  int64_t y;
1320  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1321 
1322  if (ch[dep].master_channel == c)
1323  continue;
1324 
1325  if (ch[dep].time_diff_flag) {
1326  int t = ch[dep].time_diff_index;
1327 
1328  if (ch[dep].time_diff_sign) {
1329  t = -t;
1330  if (begin < t) {
1331  av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1332  return AVERROR_INVALIDDATA;
1333  }
1334  begin -= t;
1335  } else {
1336  if (end < t) {
1337  av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1338  return AVERROR_INVALIDDATA;
1339  }
1340  end -= t;
1341  }
1342 
1343  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1344  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1345  av_log(ctx->avctx, AV_LOG_ERROR,
1346  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1347  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1348  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1349  return AVERROR_INVALIDDATA;
1350  }
1351 
1352  for (smp = begin; smp < end; smp++) {
1353  y = (1 << 6) +
1354  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1355  MUL64(ch[dep].weighting[1], master[smp ]) +
1356  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1357  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1358  MUL64(ch[dep].weighting[4], master[smp + t]) +
1359  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1360 
1361  bd->raw_samples[smp] += y >> 7;
1362  }
1363  } else {
1364 
1365  if (begin - 1 < ctx->raw_buffer - master ||
1366  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1367  av_log(ctx->avctx, AV_LOG_ERROR,
1368  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1369  master + begin - 1, master + end + 1,
1370  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1371  return AVERROR_INVALIDDATA;
1372  }
1373 
1374  for (smp = begin; smp < end; smp++) {
1375  y = (1 << 6) +
1376  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1377  MUL64(ch[dep].weighting[1], master[smp ]) +
1378  MUL64(ch[dep].weighting[2], master[smp + 1]);
1379 
1380  bd->raw_samples[smp] += y >> 7;
1381  }
1382  }
1383  }
1384 
1385  return 0;
1386 }
1387 
1388 
1389 /** multiply two softfloats and handle the rounding off
1390  */
1392  uint64_t mantissa_temp;
1393  uint64_t mask_64;
1394  int cutoff_bit_count;
1395  unsigned char last_2_bits;
1396  unsigned int mantissa;
1397  int32_t sign;
1398  uint32_t return_val = 0;
1399  int bit_count = 48;
1400 
1401  sign = a.sign ^ b.sign;
1402 
1403  // Multiply mantissa bits in a 64-bit register
1404  mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1405  mask_64 = (uint64_t)0x1 << 47;
1406 
1407  if (!mantissa_temp)
1408  return FLOAT_0;
1409 
1410  // Count the valid bit count
1411  while (!(mantissa_temp & mask_64) && mask_64) {
1412  bit_count--;
1413  mask_64 >>= 1;
1414  }
1415 
1416  // Round off
1417  cutoff_bit_count = bit_count - 24;
1418  if (cutoff_bit_count > 0) {
1419  last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1420  if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1421  // Need to round up
1422  mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1423  }
1424  }
1425 
1426  if (cutoff_bit_count >= 0) {
1427  mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1428  } else {
1429  mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
1430  }
1431 
1432  // Need one more shift?
1433  if (mantissa & 0x01000000ul) {
1434  bit_count++;
1435  mantissa >>= 1;
1436  }
1437 
1438  if (!sign) {
1439  return_val = 0x80000000U;
1440  }
1441 
1442  return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
1443  return_val |= mantissa;
1444  return av_bits2sf_ieee754(return_val);
1445 }
1446 
1447 
1448 /** Read and decode the floating point sample data
1449  */
1450 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1451  AVCodecContext *avctx = ctx->avctx;
1452  GetBitContext *gb = &ctx->gb;
1453  SoftFloat_IEEE754 *acf = ctx->acf;
1454  int *shift_value = ctx->shift_value;
1455  int *last_shift_value = ctx->last_shift_value;
1456  int *last_acf_mantissa = ctx->last_acf_mantissa;
1457  int **raw_mantissa = ctx->raw_mantissa;
1458  int *nbits = ctx->nbits;
1459  unsigned char *larray = ctx->larray;
1460  int frame_length = ctx->cur_frame_length;
1461  SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1462  unsigned int partA_flag;
1463  unsigned int highest_byte;
1464  unsigned int shift_amp;
1465  uint32_t tmp_32;
1466  int use_acf;
1467  int nchars;
1468  int i;
1469  int c;
1470  long k;
1471  long nbits_aligned;
1472  unsigned long acc;
1473  unsigned long j;
1474  uint32_t sign;
1475  uint32_t e;
1476  uint32_t mantissa;
1477 
1478  skip_bits_long(gb, 32); //num_bytes_diff_float
1479  use_acf = get_bits1(gb);
1480 
1481  if (ra_frame) {
1482  memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1483  memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
1484  ff_mlz_flush_dict(ctx->mlz);
1485  }
1486 
1487  if (avctx->channels * 8 > get_bits_left(gb))
1488  return AVERROR_INVALIDDATA;
1489 
1490  for (c = 0; c < avctx->channels; ++c) {
1491  if (use_acf) {
1492  //acf_flag
1493  if (get_bits1(gb)) {
1494  tmp_32 = get_bits(gb, 23);
1495  last_acf_mantissa[c] = tmp_32;
1496  } else {
1497  tmp_32 = last_acf_mantissa[c];
1498  }
1499  acf[c] = av_bits2sf_ieee754(tmp_32);
1500  } else {
1501  acf[c] = FLOAT_1;
1502  }
1503 
1504  highest_byte = get_bits(gb, 2);
1505  partA_flag = get_bits1(gb);
1506  shift_amp = get_bits1(gb);
1507 
1508  if (shift_amp) {
1509  shift_value[c] = get_bits(gb, 8);
1510  last_shift_value[c] = shift_value[c];
1511  } else {
1512  shift_value[c] = last_shift_value[c];
1513  }
1514 
1515  if (partA_flag) {
1516  if (!get_bits1(gb)) { //uncompressed
1517  for (i = 0; i < frame_length; ++i) {
1518  if (ctx->raw_samples[c][i] == 0) {
1519  ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1520  }
1521  }
1522  } else { //compressed
1523  nchars = 0;
1524  for (i = 0; i < frame_length; ++i) {
1525  if (ctx->raw_samples[c][i] == 0) {
1526  nchars += 4;
1527  }
1528  }
1529 
1530  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1531  if(tmp_32 != nchars) {
1532  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1533  return AVERROR_INVALIDDATA;
1534  }
1535 
1536  for (i = 0; i < frame_length; ++i) {
1537  ctx->raw_mantissa[c][i] = AV_RB32(larray);
1538  }
1539  }
1540  }
1541 
1542  //decode part B
1543  if (highest_byte) {
1544  for (i = 0; i < frame_length; ++i) {
1545  if (ctx->raw_samples[c][i] != 0) {
1546  //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1547  if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1548  nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1549  } else {
1550  nbits[i] = 23;
1551  }
1552  nbits[i] = FFMIN(nbits[i], highest_byte*8);
1553  }
1554  }
1555 
1556  if (!get_bits1(gb)) { //uncompressed
1557  for (i = 0; i < frame_length; ++i) {
1558  if (ctx->raw_samples[c][i] != 0) {
1559  raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1560  }
1561  }
1562  } else { //compressed
1563  nchars = 0;
1564  for (i = 0; i < frame_length; ++i) {
1565  if (ctx->raw_samples[c][i]) {
1566  nchars += (int) nbits[i] / 8;
1567  if (nbits[i] & 7) {
1568  ++nchars;
1569  }
1570  }
1571  }
1572 
1573  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1574  if(tmp_32 != nchars) {
1575  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1576  return AVERROR_INVALIDDATA;
1577  }
1578 
1579  j = 0;
1580  for (i = 0; i < frame_length; ++i) {
1581  if (ctx->raw_samples[c][i]) {
1582  if (nbits[i] & 7) {
1583  nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1584  } else {
1585  nbits_aligned = nbits[i];
1586  }
1587  acc = 0;
1588  for (k = 0; k < nbits_aligned/8; ++k) {
1589  acc = (acc << 8) + larray[j++];
1590  }
1591  acc >>= (nbits_aligned - nbits[i]);
1592  raw_mantissa[c][i] = acc;
1593  }
1594  }
1595  }
1596  }
1597 
1598  for (i = 0; i < frame_length; ++i) {
1599  SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1600  pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1601 
1602  if (ctx->raw_samples[c][i] != 0) {
1603  if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1604  pcm_sf = multiply(acf[c], pcm_sf);
1605  }
1606 
1607  sign = pcm_sf.sign;
1608  e = pcm_sf.exp;
1609  mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1610 
1611  while(mantissa >= 0x1000000) {
1612  e++;
1613  mantissa >>= 1;
1614  }
1615 
1616  if (mantissa) e += (shift_value[c] - 127);
1617  mantissa &= 0x007fffffUL;
1618 
1619  tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1620  ctx->raw_samples[c][i] = tmp_32;
1621  } else {
1622  ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1623  }
1624  }
1625  align_get_bits(gb);
1626  }
1627  return 0;
1628 }
1629 
1630 
1631 /** Read the frame data.
1632  */
1633 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1634 {
1635  ALSSpecificConfig *sconf = &ctx->sconf;
1636  AVCodecContext *avctx = ctx->avctx;
1637  GetBitContext *gb = &ctx->gb;
1638  unsigned int div_blocks[32]; ///< block sizes.
1639  unsigned int c;
1640  unsigned int js_blocks[2];
1641  uint32_t bs_info = 0;
1642  int ret;
1643 
1644  // skip the size of the ra unit if present in the frame
1645  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1646  skip_bits_long(gb, 32);
1647 
1648  if (sconf->mc_coding && sconf->joint_stereo) {
1649  ctx->js_switch = get_bits1(gb);
1650  align_get_bits(gb);
1651  }
1652 
1653  if (!sconf->mc_coding || ctx->js_switch) {
1654  int independent_bs = !sconf->joint_stereo;
1655 
1656  for (c = 0; c < avctx->channels; c++) {
1657  js_blocks[0] = 0;
1658  js_blocks[1] = 0;
1659 
1660  get_block_sizes(ctx, div_blocks, &bs_info);
1661 
1662  // if joint_stereo and block_switching is set, independent decoding
1663  // is signaled via the first bit of bs_info
1664  if (sconf->joint_stereo && sconf->block_switching)
1665  if (bs_info >> 31)
1666  independent_bs = 2;
1667 
1668  // if this is the last channel, it has to be decoded independently
1669  if (c == avctx->channels - 1 || (c & 1))
1670  independent_bs = 1;
1671 
1672  if (independent_bs) {
1673  ret = decode_blocks_ind(ctx, ra_frame, c,
1674  div_blocks, js_blocks);
1675  if (ret < 0)
1676  return ret;
1677  independent_bs--;
1678  } else {
1679  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1680  if (ret < 0)
1681  return ret;
1682 
1683  c++;
1684  }
1685 
1686  // store carryover raw samples
1687  memmove(ctx->raw_samples[c] - sconf->max_order,
1688  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1689  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1690  }
1691  } else { // multi-channel coding
1692  ALSBlockData bd = { 0 };
1693  int b, ret;
1694  int *reverted_channels = ctx->reverted_channels;
1695  unsigned int offset = 0;
1696 
1697  for (c = 0; c < avctx->channels; c++)
1698  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1699  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1700  return AVERROR_INVALIDDATA;
1701  }
1702 
1703  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1704 
1705  bd.ra_block = ra_frame;
1707 
1708  get_block_sizes(ctx, div_blocks, &bs_info);
1709 
1710  for (b = 0; b < ctx->num_blocks; b++) {
1711  bd.block_length = div_blocks[b];
1712  if (bd.block_length <= 0) {
1713  av_log(ctx->avctx, AV_LOG_WARNING,
1714  "Invalid block length %u in channel data!\n",
1715  bd.block_length);
1716  continue;
1717  }
1718 
1719  for (c = 0; c < avctx->channels; c++) {
1720  bd.const_block = ctx->const_block + c;
1721  bd.shift_lsbs = ctx->shift_lsbs + c;
1722  bd.opt_order = ctx->opt_order + c;
1724  bd.use_ltp = ctx->use_ltp + c;
1725  bd.ltp_lag = ctx->ltp_lag + c;
1726  bd.ltp_gain = ctx->ltp_gain[c];
1727  bd.lpc_cof = ctx->lpc_cof[c];
1728  bd.quant_cof = ctx->quant_cof[c];
1729  bd.raw_samples = ctx->raw_samples[c] + offset;
1730  bd.raw_other = NULL;
1731 
1732  if ((ret = read_block(ctx, &bd)) < 0)
1733  return ret;
1734  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1735  return ret;
1736  }
1737 
1738  for (c = 0; c < avctx->channels; c++) {
1739  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1740  reverted_channels, offset, c);
1741  if (ret < 0)
1742  return ret;
1743  }
1744  for (c = 0; c < avctx->channels; c++) {
1745  bd.const_block = ctx->const_block + c;
1746  bd.shift_lsbs = ctx->shift_lsbs + c;
1747  bd.opt_order = ctx->opt_order + c;
1749  bd.use_ltp = ctx->use_ltp + c;
1750  bd.ltp_lag = ctx->ltp_lag + c;
1751  bd.ltp_gain = ctx->ltp_gain[c];
1752  bd.lpc_cof = ctx->lpc_cof[c];
1753  bd.quant_cof = ctx->quant_cof[c];
1754  bd.raw_samples = ctx->raw_samples[c] + offset;
1755 
1756  if ((ret = decode_block(ctx, &bd)) < 0)
1757  return ret;
1758  }
1759 
1760  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1761  offset += div_blocks[b];
1762  bd.ra_block = 0;
1763  }
1764 
1765  // store carryover raw samples
1766  for (c = 0; c < avctx->channels; c++)
1767  memmove(ctx->raw_samples[c] - sconf->max_order,
1768  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1769  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1770  }
1771 
1772  if (sconf->floating) {
1773  read_diff_float_data(ctx, ra_frame);
1774  }
1775 
1776  if (get_bits_left(gb) < 0) {
1777  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1778  return AVERROR_INVALIDDATA;
1779  }
1780 
1781  return 0;
1782 }
1783 
1784 
1785 /** Decode an ALS frame.
1786  */
1787 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1788  AVPacket *avpkt)
1789 {
1790  ALSDecContext *ctx = avctx->priv_data;
1791  AVFrame *frame = data;
1792  ALSSpecificConfig *sconf = &ctx->sconf;
1793  const uint8_t *buffer = avpkt->data;
1794  int buffer_size = avpkt->size;
1795  int invalid_frame, ret;
1796  unsigned int c, sample, ra_frame, bytes_read, shift;
1797 
1798  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1799  return ret;
1800 
1801  // In the case that the distance between random access frames is set to zero
1802  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1803  // For the first frame, if prediction is used, all samples used from the
1804  // previous frame are assumed to be zero.
1805  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1806 
1807  // the last frame to decode might have a different length
1808  if (sconf->samples != 0xFFFFFFFF)
1809  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1810  sconf->frame_length);
1811  else
1812  ctx->cur_frame_length = sconf->frame_length;
1813 
1814  // decode the frame data
1815  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1816  av_log(ctx->avctx, AV_LOG_WARNING,
1817  "Reading frame data failed. Skipping RA unit.\n");
1818 
1819  ctx->frame_id++;
1820 
1821  /* get output buffer */
1822  frame->nb_samples = ctx->cur_frame_length;
1823  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1824  return ret;
1825 
1826  // transform decoded frame into output format
1827  #define INTERLEAVE_OUTPUT(bps) \
1828  { \
1829  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1830  int channels = avctx->channels; \
1831  int32_t **raw_samples = ctx->raw_samples; \
1832  shift = bps - ctx->avctx->bits_per_raw_sample; \
1833  if (!ctx->cs_switch) { \
1834  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1835  for (c = 0; c < channels; c++) \
1836  *dest++ = raw_samples[c][sample] * (1U << shift); \
1837  } else { \
1838  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1839  for (c = 0; c < channels; c++) \
1840  *dest++ = raw_samples[sconf->chan_pos[c]][sample] * (1U << shift);\
1841  } \
1842  }
1843 
1844  if (ctx->avctx->bits_per_raw_sample <= 16) {
1845  INTERLEAVE_OUTPUT(16)
1846  } else {
1847  INTERLEAVE_OUTPUT(32)
1848  }
1849 
1850  // update CRC
1851  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1852  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1853 
1854  if (ctx->avctx->bits_per_raw_sample == 24) {
1855  int32_t *src = (int32_t *)frame->data[0];
1856 
1857  for (sample = 0;
1858  sample < ctx->cur_frame_length * avctx->channels;
1859  sample++) {
1860  int32_t v;
1861 
1862  if (swap)
1863  v = av_bswap32(src[sample]);
1864  else
1865  v = src[sample];
1866  if (!HAVE_BIGENDIAN)
1867  v >>= 8;
1868 
1869  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1870  }
1871  } else {
1872  uint8_t *crc_source;
1873 
1874  if (swap) {
1875  if (ctx->avctx->bits_per_raw_sample <= 16) {
1876  int16_t *src = (int16_t*) frame->data[0];
1877  int16_t *dest = (int16_t*) ctx->crc_buffer;
1878  for (sample = 0;
1879  sample < ctx->cur_frame_length * avctx->channels;
1880  sample++)
1881  *dest++ = av_bswap16(src[sample]);
1882  } else {
1883  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1884  (uint32_t *) frame->data[0],
1885  ctx->cur_frame_length * avctx->channels);
1886  }
1887  crc_source = ctx->crc_buffer;
1888  } else {
1889  crc_source = frame->data[0];
1890  }
1891 
1892  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1893  ctx->cur_frame_length * avctx->channels *
1895  }
1896 
1897 
1898  // check CRC sums if this is the last frame
1899  if (ctx->cur_frame_length != sconf->frame_length &&
1900  ctx->crc_org != ctx->crc) {
1901  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1902  if (avctx->err_recognition & AV_EF_EXPLODE)
1903  return AVERROR_INVALIDDATA;
1904  }
1905  }
1906 
1907  *got_frame_ptr = 1;
1908 
1909  bytes_read = invalid_frame ? buffer_size :
1910  (get_bits_count(&ctx->gb) + 7) >> 3;
1911 
1912  return bytes_read;
1913 }
1914 
1915 
1916 /** Uninitialize the ALS decoder.
1917  */
1919 {
1920  ALSDecContext *ctx = avctx->priv_data;
1921  int i;
1922 
1923  av_freep(&ctx->sconf.chan_pos);
1924 
1925  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1926 
1927  av_freep(&ctx->const_block);
1928  av_freep(&ctx->shift_lsbs);
1929  av_freep(&ctx->opt_order);
1931  av_freep(&ctx->use_ltp);
1932  av_freep(&ctx->ltp_lag);
1933  av_freep(&ctx->ltp_gain);
1934  av_freep(&ctx->ltp_gain_buffer);
1935  av_freep(&ctx->quant_cof);
1936  av_freep(&ctx->lpc_cof);
1937  av_freep(&ctx->quant_cof_buffer);
1938  av_freep(&ctx->lpc_cof_buffer);
1940  av_freep(&ctx->prev_raw_samples);
1941  av_freep(&ctx->raw_samples);
1942  av_freep(&ctx->raw_buffer);
1943  av_freep(&ctx->chan_data);
1944  av_freep(&ctx->chan_data_buffer);
1945  av_freep(&ctx->reverted_channels);
1946  av_freep(&ctx->crc_buffer);
1947  if (ctx->mlz) {
1948  av_freep(&ctx->mlz->dict);
1949  av_freep(&ctx->mlz);
1950  }
1951  av_freep(&ctx->acf);
1952  av_freep(&ctx->last_acf_mantissa);
1953  av_freep(&ctx->shift_value);
1954  av_freep(&ctx->last_shift_value);
1955  if (ctx->raw_mantissa) {
1956  for (i = 0; i < avctx->channels; i++) {
1957  av_freep(&ctx->raw_mantissa[i]);
1958  }
1959  av_freep(&ctx->raw_mantissa);
1960  }
1961  av_freep(&ctx->larray);
1962  av_freep(&ctx->nbits);
1963 
1964  return 0;
1965 }
1966 
1967 
1968 /** Initialize the ALS decoder.
1969  */
1971 {
1972  unsigned int c;
1973  unsigned int channel_size;
1974  int num_buffers, ret;
1975  ALSDecContext *ctx = avctx->priv_data;
1976  ALSSpecificConfig *sconf = &ctx->sconf;
1977  ctx->avctx = avctx;
1978 
1979  if (!avctx->extradata) {
1980  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1981  return AVERROR_INVALIDDATA;
1982  }
1983 
1984  if ((ret = read_specific_config(ctx)) < 0) {
1985  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1986  goto fail;
1987  }
1988 
1989  if ((ret = check_specific_config(ctx)) < 0) {
1990  goto fail;
1991  }
1992 
1993  if (sconf->bgmc) {
1994  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1995  if (ret < 0)
1996  goto fail;
1997  }
1998  if (sconf->floating) {
1999  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
2000  avctx->bits_per_raw_sample = 32;
2001  } else {
2002  avctx->sample_fmt = sconf->resolution > 1
2004  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
2005  if (avctx->bits_per_raw_sample > 32) {
2006  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
2007  avctx->bits_per_raw_sample);
2008  ret = AVERROR_INVALIDDATA;
2009  goto fail;
2010  }
2011  }
2012 
2013  // set maximum Rice parameter for progressive decoding based on resolution
2014  // This is not specified in 14496-3 but actually done by the reference
2015  // codec RM22 revision 2.
2016  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
2017 
2018  // set lag value for long-term prediction
2019  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
2020  (avctx->sample_rate >= 192000);
2021 
2022  // allocate quantized parcor coefficient buffer
2023  num_buffers = sconf->mc_coding ? avctx->channels : 1;
2024  if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
2025  return AVERROR_INVALIDDATA;
2026 
2027  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2028  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2029  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2030  sizeof(*ctx->quant_cof_buffer));
2031  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2032  sizeof(*ctx->lpc_cof_buffer));
2034  sizeof(*ctx->lpc_cof_buffer));
2035 
2036  if (!ctx->quant_cof || !ctx->lpc_cof ||
2037  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
2038  !ctx->lpc_cof_reversed_buffer) {
2039  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2040  ret = AVERROR(ENOMEM);
2041  goto fail;
2042  }
2043 
2044  // assign quantized parcor coefficient buffers
2045  for (c = 0; c < num_buffers; c++) {
2046  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2047  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
2048  }
2049 
2050  // allocate and assign lag and gain data buffer for ltp mode
2051  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2052  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2053  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2054  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2055  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2056  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2057  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2058  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2059 
2060  if (!ctx->const_block || !ctx->shift_lsbs ||
2061  !ctx->opt_order || !ctx->store_prev_samples ||
2062  !ctx->use_ltp || !ctx->ltp_lag ||
2063  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2064  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2065  ret = AVERROR(ENOMEM);
2066  goto fail;
2067  }
2068 
2069  for (c = 0; c < num_buffers; c++)
2070  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2071 
2072  // allocate and assign channel data buffer for mcc mode
2073  if (sconf->mc_coding) {
2074  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
2075  sizeof(*ctx->chan_data_buffer));
2076  ctx->chan_data = av_mallocz_array(num_buffers,
2077  sizeof(*ctx->chan_data));
2078  ctx->reverted_channels = av_malloc_array(num_buffers,
2079  sizeof(*ctx->reverted_channels));
2080 
2081  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2082  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2083  ret = AVERROR(ENOMEM);
2084  goto fail;
2085  }
2086 
2087  for (c = 0; c < num_buffers; c++)
2088  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2089  } else {
2090  ctx->chan_data = NULL;
2091  ctx->chan_data_buffer = NULL;
2092  ctx->reverted_channels = NULL;
2093  }
2094 
2095  channel_size = sconf->frame_length + sconf->max_order;
2096 
2097  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2098  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2099  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2100 
2101  if (sconf->floating) {
2102  ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2103  ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2104  ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2105  ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2106  ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2107 
2108  ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2109  ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2110  ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
2111 
2112  if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2113  || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2114  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2115  ret = AVERROR(ENOMEM);
2116  goto fail;
2117  }
2118 
2119  ff_mlz_init_dict(avctx, ctx->mlz);
2120  ff_mlz_flush_dict(ctx->mlz);
2121 
2122  for (c = 0; c < avctx->channels; ++c) {
2123  ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2124  }
2125  }
2126 
2127  // allocate previous raw sample buffer
2128  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2129  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2130  ret = AVERROR(ENOMEM);
2131  goto fail;
2132  }
2133 
2134  // assign raw samples buffers
2135  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2136  for (c = 1; c < avctx->channels; c++)
2137  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2138 
2139  // allocate crc buffer
2140  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2143  avctx->channels *
2145  sizeof(*ctx->crc_buffer));
2146  if (!ctx->crc_buffer) {
2147  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2148  ret = AVERROR(ENOMEM);
2149  goto fail;
2150  }
2151  }
2152 
2153  ff_bswapdsp_init(&ctx->bdsp);
2154 
2155  return 0;
2156 
2157 fail:
2158  return ret;
2159 }
2160 
2161 
2162 /** Flush (reset) the frame ID after seeking.
2163  */
2164 static av_cold void flush(AVCodecContext *avctx)
2165 {
2166  ALSDecContext *ctx = avctx->priv_data;
2167 
2168  ctx->frame_id = 0;
2169 }
2170 
2171 
2173  .name = "als",
2174  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2175  .type = AVMEDIA_TYPE_AUDIO,
2176  .id = AV_CODEC_ID_MP4ALS,
2177  .priv_data_size = sizeof(ALSDecContext),
2178  .init = decode_init,
2179  .close = decode_end,
2180  .decode = decode_frame,
2181  .flush = flush,
2182  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2183  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
2184 };
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
#define MUL64(a, b)
Definition: mathops.h:54
#define FF_SANE_NB_CHANNELS
Definition: internal.h:90
AVCodec ff_als_decoder
Definition: alsdec.c:2172
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1222
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:907
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:162
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
unsigned char * larray
buffer to store the output of masked lz decompression
Definition: alsdec.c:237
const char * s
Definition: avisynth_c.h:768
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:201
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:215
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
MLZ * mlz
masked lz decompression structure
Definition: alsdec.c:231
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:228
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:230
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:262
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:121
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:205
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int acc
Definition: yuv2rgb.c:547
#define avpriv_request_sample(...)
int block_switching
number of block switching levels
Definition: alsdec.c:170
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:177
int size
Definition: avcodec.h:1680
const char * b
Definition: vf_curves.c:113
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:445
#define av_bswap16
Definition: bswap.h:31
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:166
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1633
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:223
GetBitContext gb
Definition: alsdec.c:197
Block Gilbert-Moore decoder header.
int * nbits
contains the number of bits to read for masked lz decompression for all samples
Definition: alsdec.c:238
const char * master
Definition: vf_curves.c:114
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:204
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3164
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1069
#define INTERLEAVE_OUTPUT(bps)
#define src
Definition: vp8dsp.c:254
#define sample
AVCodec.
Definition: avcodec.h:3739
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:492
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:386
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:216
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:211
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:110
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1970
BswapDSPContext bdsp
Definition: alsdec.c:198
static char buffer[20]
Definition: seek.c:32
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:254
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2531
uint8_t
#define av_cold
Definition: attributes.h:82
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:613
float delta
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
#define AV_RB32
Definition: intreadwrite.h:130
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:217
static SoftFloat_IEEE754 av_bits2sf_ieee754(uint32_t n)
Make a softfloat out of the bitstream.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1876
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:176
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:173
Public header for CRC hash function implementation.
static SoftFloat_IEEE754 av_int2sf_ieee754(int64_t n, int e)
Convert integer to softfloat.
const char data[16]
Definition: mxf.c:90
uint8_t * data
Definition: avcodec.h:1679
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:200
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1098
unsigned int block_length
number of samples within the block
Definition: alsdec.c:243
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1083
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:164
int weighting[6]
Definition: alsdec.c:190
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:220
signed 32 bits
Definition: samplefmt.h:62
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:225
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:171
#define U(x)
Definition: vp56_arith.h:37
MLZDict * dict
Definition: mlz.h:54
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:205
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:589
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:250
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:165
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:210
#define PTRDIFF_SPECIFIER
Definition: internal.h:256
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:261
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:248
int * chan_pos
original channel positions
Definition: alsdec.c:179
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:181
AVCodecContext * avctx
Definition: alsdec.c:195
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:71
static const SoftFloat FLOAT_1
1.0
Definition: softfloat.h:41
const char * r
Definition: vf_curves.c:111
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
multiply two softfloats and handle the rounding off
Definition: alsdec.c:1391
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:221
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame)
Read and decode the floating point sample data.
Definition: alsdec.c:1450
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:178
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:206
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:222
const char * name
Name of the codec implementation.
Definition: avcodec.h:3746
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:227
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1138
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:503
const AVCRC * crc_table
Definition: alsdec.c:199
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:209
static void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.h:229
#define fail()
Definition: checkasm.h:109
ALSSpecificConfig sconf
Definition: alsdec.c:196
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:249
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:212
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:3050
#define FFMIN(a, b)
Definition: common.h:96
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:627
int ff_mlz_decompression(MLZ *mlz, GetBitContext *gb, int size, unsigned char *buff)
Run mlz decompression on the next size bits and the output will be stored in buff.
Definition: mlz.c:123
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:175
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
#define EXP_BIAS
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:357
int * last_shift_value
contains last shift value for all channels
Definition: alsdec.c:235
static int av_cmp_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Compare a with b strictly.
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:510
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1918
int * const_block
if true, this is a constant value block
Definition: alsdec.c:245
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:3061
int n
Definition: avisynth_c.h:684
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:161
int time_diff_flag
Definition: alsdec.c:187
SoftFloat_IEEE754 * acf
contains common multiplier for all channels
Definition: alsdec.c:232
int master_channel
Definition: alsdec.c:186
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:201
int coef_table
table index of Rice code parameters
Definition: alsdec.c:167
if(ret< 0)
Definition: vf_mcdeint.c:279
static void error(const char *err)
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:583
#define FF_ARRAY_ELEMS(a)
#define av_log2
Definition: intmath.h:83
int sb_part
sub-block partition
Definition: alsdec.c:172
MLZ data strucure.
Definition: mlz.h:47
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:257
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:208
av_cold void ff_mlz_init_dict(void *context, MLZ *mlz)
Initialize the dictionary.
Definition: mlz.c:23
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:252
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:246
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:244
Libavcodec external API header.
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:510
int * shift_value
value by which the binary point is to be shifted for all channels
Definition: alsdec.c:234
int sample_rate
samples per second
Definition: avcodec.h:2523
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:457
main external API structure.
Definition: avcodec.h:1761
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:224
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1787
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1669
#define MISSING_ERR(cond, str, errval)
void * buf
Definition: avisynth_c.h:690
int extradata_size
Definition: avcodec.h:1877
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:3064
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:314
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:339
double value
Definition: eval.c:91
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:207
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:307
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:1052
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:251
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:222
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:3058
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:50
RA_Flag
Definition: alsdec.c:151
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:291
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:347
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:168
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:255
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:226
int ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
int * last_acf_mantissa
contains the last acf mantissa data of common multiplier for all channels
Definition: alsdec.c:233
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:213
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:229
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:169
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:159
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:215
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:343
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:174
int
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:131
common internal api header.
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:256
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:46
av_cold void ff_mlz_flush_dict(MLZ *mlz)
Flush the dictionary.
Definition: mlz.c:35
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:2164
signed 16 bits
Definition: samplefmt.h:61
static double c[64]
int time_diff_index
Definition: alsdec.c:189
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:218
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:253
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata from a raw buffer to retrieve audio configuration. ...
Definition: mpeg4audio.c:155
#define MKBETAG(a, b, c, d)
Definition: common.h:343
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:469
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1803
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:219
int channels
number of audio channels
Definition: avcodec.h:2524
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:180
int ** raw_mantissa
decoded mantissa bits of the difference signal
Definition: alsdec.c:236
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:200
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1043
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:1016
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:163
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:465
int stop_flag
Definition: alsdec.c:185
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:247
#define av_freep(p)
void INT64 INT64 count
Definition: avisynth_c.h:690
void INT64 start
Definition: avisynth_c.h:690
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
#define HAVE_BIGENDIAN
Definition: config.h:198
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1231
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:530
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:214
static SoftFloat_IEEE754 av_div_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Divide a by b.
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:203
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1278
This structure stores compressed data.
Definition: avcodec.h:1656
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:267
uint32_t AVCRC
Definition: crc.h:47
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:1002
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:202
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
Definition: get_bits.h:277
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:160
int time_diff_sign
Definition: alsdec.c:188