28 #define POS(x, y) src[(x) + stride * (y)] 31 int log2_size,
int c_idx)
34 ((x) >> s->ps.sps->log2_min_pu_size) 36 (s->ref->tab_mvf[(x) + (y) * min_pu_width]) 37 #define MVF_PU(x, y) \ 38 MVF(PU(x0 + ((x) * (1 << hshift))), PU(y0 + ((y) * (1 << vshift)))) 39 #define IS_INTRA(x, y) \ 40 (MVF_PU(x, y).pred_flag == PF_INTRA) 41 #define MIN_TB_ADDR_ZS(x, y) \ 42 s->ps.pps->min_tb_addr_zs[(y) * (s->ps.sps->tb_mask+2) + (x)] 43 #define EXTEND(ptr, val, len) \ 45 pixel4 pix = PIXEL_SPLAT_X4(val); \ 46 for (i = 0; i < (len); i += 4) \ 47 AV_WN4P(ptr + i, pix); \ 50 #define EXTEND_RIGHT_CIP(ptr, start, length) \ 51 for (i = start; i < (start) + (length); i += 4) \ 52 if (!IS_INTRA(i, -1)) \ 53 AV_WN4P(&ptr[i], a); \ 55 a = PIXEL_SPLAT_X4(ptr[i+3]) 56 #define EXTEND_LEFT_CIP(ptr, start, length) \ 57 for (i = start; i > (start) - (length); i--) \ 58 if (!IS_INTRA(i - 1, -1)) \ 60 #define EXTEND_UP_CIP(ptr, start, length) \ 61 for (i = (start); i > (start) - (length); i -= 4) \ 62 if (!IS_INTRA(-1, i - 3)) \ 63 AV_WN4P(&ptr[i - 3], a); \ 65 a = PIXEL_SPLAT_X4(ptr[i - 3]) 66 #define EXTEND_DOWN_CIP(ptr, start, length) \ 67 for (i = start; i < (start) + (length); i += 4) \ 68 if (!IS_INTRA(-1, i)) \ 69 AV_WN4P(&ptr[i], a); \ 71 a = PIXEL_SPLAT_X4(ptr[i + 3]) 75 int hshift =
s->ps.sps->hshift[c_idx];
76 int vshift =
s->ps.sps->vshift[c_idx];
77 int size = (1 << log2_size);
78 int size_in_luma_h = size << hshift;
79 int size_in_tbs_h = size_in_luma_h >>
s->ps.sps->log2_min_tb_size;
80 int size_in_luma_v = size << vshift;
81 int size_in_tbs_v = size_in_luma_v >>
s->ps.sps->log2_min_tb_size;
84 int x_tb = (x0 >>
s->ps.sps->log2_min_tb_size) &
s->ps.sps->tb_mask;
85 int y_tb = (y0 >>
s->ps.sps->log2_min_tb_size) &
s->ps.sps->tb_mask;
86 int spin = c_idx && !size_in_tbs_v && ((2 * y0) & (1 <<
s->ps.sps->log2_min_tb_size));
90 ptrdiff_t
stride =
s->frame->linesize[c_idx] /
sizeof(
pixel);
93 int min_pu_width =
s->ps.sps->min_pu_width;
103 pixel *left = left_array + 1;
104 pixel *top = top_array + 1;
105 pixel *filtered_left = filtered_left_array + 1;
106 pixel *filtered_top = filtered_top_array + 1;
113 int bottom_left_size = (
FFMIN(y0 + 2 * size_in_luma_v,
s->ps.sps->height) -
114 (y0 + size_in_luma_v)) >> vshift;
115 int top_right_size = (
FFMIN(x0 + 2 * size_in_luma_h,
s->ps.sps->width) -
116 (x0 + size_in_luma_h)) >> hshift;
118 if (
s->ps.pps->constrained_intra_pred_flag == 1) {
119 int size_in_luma_pu_v =
PU(size_in_luma_v);
120 int size_in_luma_pu_h =
PU(size_in_luma_h);
121 int on_pu_edge_x = !av_mod_uintp2(x0,
s->ps.sps->log2_min_pu_size);
122 int on_pu_edge_y = !av_mod_uintp2(y0,
s->ps.sps->log2_min_pu_size);
123 if (!size_in_luma_pu_h)
125 if (cand_bottom_left == 1 && on_pu_edge_x) {
126 int x_left_pu =
PU(x0 - 1);
127 int y_bottom_pu =
PU(y0 + size_in_luma_v);
128 int max =
FFMIN(size_in_luma_pu_v,
s->ps.sps->min_pu_height - y_bottom_pu);
129 cand_bottom_left = 0;
130 for (i = 0; i < max; i += 2)
131 cand_bottom_left |= (
MVF(x_left_pu, y_bottom_pu + i).pred_flag ==
PF_INTRA);
133 if (cand_left == 1 && on_pu_edge_x) {
134 int x_left_pu =
PU(x0 - 1);
135 int y_left_pu =
PU(y0);
136 int max =
FFMIN(size_in_luma_pu_v,
s->ps.sps->min_pu_height - y_left_pu);
138 for (i = 0; i < max; i += 2)
139 cand_left |= (
MVF(x_left_pu, y_left_pu + i).pred_flag ==
PF_INTRA);
141 if (cand_up_left == 1) {
142 int x_left_pu =
PU(x0 - 1);
143 int y_top_pu =
PU(y0 - 1);
144 cand_up_left =
MVF(x_left_pu, y_top_pu).pred_flag ==
PF_INTRA;
146 if (cand_up == 1 && on_pu_edge_y) {
147 int x_top_pu =
PU(x0);
148 int y_top_pu =
PU(y0 - 1);
149 int max =
FFMIN(size_in_luma_pu_h,
s->ps.sps->min_pu_width - x_top_pu);
151 for (i = 0; i < max; i += 2)
152 cand_up |= (
MVF(x_top_pu + i, y_top_pu).pred_flag ==
PF_INTRA);
154 if (cand_up_right == 1 && on_pu_edge_y) {
155 int y_top_pu =
PU(y0 - 1);
156 int x_right_pu =
PU(x0 + size_in_luma_h);
157 int max =
FFMIN(size_in_luma_pu_h,
s->ps.sps->min_pu_width - x_right_pu);
159 for (i = 0; i < max; i += 2)
160 cand_up_right |= (
MVF(x_right_pu + i, y_top_pu).pred_flag ==
PF_INTRA);
167 left[-1] =
POS(-1, -1);
171 memcpy(top, src - stride, size *
sizeof(
pixel));
173 memcpy(top + size, src - stride + size, size *
sizeof(
pixel));
174 EXTEND(top + size + top_right_size,
POS(size + top_right_size - 1, -1),
175 size - top_right_size);
178 for (i = 0; i <
size; i++)
179 left[i] =
POS(-1, i);
180 if (cand_bottom_left) {
181 for (i = size; i < size + bottom_left_size; i++)
182 left[i] =
POS(-1, i);
183 EXTEND(left + size + bottom_left_size,
POS(-1, size + bottom_left_size - 1),
184 size - bottom_left_size);
187 if (
s->ps.pps->constrained_intra_pred_flag == 1) {
188 if (cand_bottom_left || cand_left || cand_up_left || cand_up || cand_up_right) {
189 int size_max_x = x0 + ((2 *
size) << hshift) <
s->ps.sps->width ?
190 2 *
size : (
s->ps.sps->width - x0) >> hshift;
191 int size_max_y = y0 + ((2 *
size) << vshift) <
s->ps.sps->height ?
192 2 *
size : (
s->ps.sps->height - y0) >> vshift;
193 int j = size + (cand_bottom_left? bottom_left_size: 0) -1;
194 if (!cand_up_right) {
195 size_max_x = x0 + ((
size) << hshift) <
s->ps.sps->width ?
196 size : (
s->ps.sps->width - x0) >> hshift;
198 if (!cand_bottom_left) {
199 size_max_y = y0 + ((
size) << vshift) <
s->ps.sps->height ?
200 size : (
s->ps.sps->height - y0) >> vshift;
202 if (cand_bottom_left || cand_left || cand_up_left) {
207 while (j < size_max_x && !
IS_INTRA(j, -1))
214 while (j < size_max_x && !
IS_INTRA(j, -1))
226 if (cand_bottom_left || cand_left) {
231 EXTEND(left, left[-1], size);
232 if (!cand_bottom_left)
233 EXTEND(left + size, left[size - 1], size);
234 if (x0 != 0 && y0 != 0) {
239 }
else if (x0 == 0) {
240 EXTEND(left, 0, size_max_y);
253 if (!cand_bottom_left) {
255 EXTEND(left + size, left[size - 1], size);
256 }
else if (cand_up_left) {
257 EXTEND(left, left[-1], 2 * size);
259 }
else if (cand_up) {
261 EXTEND(left, left[-1], 2 * size);
264 }
else if (cand_up_right) {
265 EXTEND(top, top[size], size);
266 left[-1] = top[
size];
267 EXTEND(left, left[-1], 2 * size);
273 EXTEND(top, left[-1], 2 * size);
274 EXTEND(left, left[-1], 2 * size);
279 EXTEND(left, left[size], size);
284 EXTEND(top, left[-1], size);
286 EXTEND(top + size, top[size - 1], size);
291 if (!
s->ps.sps->intra_smoothing_disabled_flag && (c_idx == 0 ||
s->ps.sps->chroma_format_idc == 3)) {
293 int intra_hor_ver_dist_thresh[] = { 7, 1, 0 };
296 if (min_dist_vert_hor > intra_hor_ver_dist_thresh[log2_size - 3]) {
298 if (
s->ps.sps->sps_strong_intra_smoothing_enable_flag && c_idx == 0 &&
300 FFABS(top[-1] + top[63] - 2 * top[31]) < threshold &&
301 FFABS(left[-1] + left[63] - 2 * left[31]) < threshold) {
304 filtered_top[-1] = top[-1];
305 filtered_top[63] = top[63];
306 for (i = 0; i < 63; i++)
307 filtered_top[i] = ((64 - (i + 1)) * top[-1] +
308 (i + 1) * top[63] + 32) >> 6;
309 for (i = 0; i < 63; i++)
310 left[i] = ((64 - (i + 1)) * left[-1] +
311 (i + 1) * left[63] + 32) >> 6;
314 filtered_left[2 * size - 1] = left[2 * size - 1];
315 filtered_top[2 * size - 1] = top[2 * size - 1];
316 for (i = 2 * size - 2; i >= 0; i--)
317 filtered_left[i] = (left[i + 1] + 2 * left[i] +
318 left[i - 1] + 2) >> 2;
320 filtered_left[-1] = (left[0] + 2 * left[-1] + top[0] + 2) >> 2;
321 for (i = 2 * size - 2; i >= 0; i--)
322 filtered_top[i] = (top[i + 1] + 2 * top[i] +
323 top[i - 1] + 2) >> 2;
324 left = filtered_left;
338 (
uint8_t *)left, stride, log2_size, c_idx);
342 (
uint8_t *)left, stride, c_idx,
348 #define INTRA_PRED(size) \ 349 static void FUNC(intra_pred_ ## size)(HEVCContext *s, int x0, int y0, int c_idx) \ 351 FUNC(intra_pred)(s, x0, y0, size, c_idx); \ 369 int size = 1 << trafo_size;
370 for (y = 0; y <
size; y++)
371 for (x = 0; x <
size; x++)
372 POS(x, y) = ((size - 1 - x) * left[y] + (x + 1) * top[
size] +
373 (size - 1 - y) * top[x] + (y + 1) * left[
size] +
size) >> (trafo_size + 1);
376 #define PRED_PLANAR(size)\ 377 static void FUNC(pred_planar_ ## size)(uint8_t *src, const uint8_t *top, \ 378 const uint8_t *left, ptrdiff_t stride) \ 380 FUNC(pred_planar)(src, top, left, stride, size + 2); \ 392 ptrdiff_t
stride,
int log2_size,
int c_idx)
395 int size = (1 << log2_size);
401 for (i = 0; i <
size; i++)
402 dc += left[i] + top[i];
404 dc >>= log2_size + 1;
408 for (i = 0; i <
size; i++)
409 for (j = 0; j <
size; j+=4)
412 if (c_idx == 0 && size < 32) {
413 POS(0, 0) = (left[0] + 2 * dc + top[0] + 2) >> 2;
414 for (x = 1; x <
size; x++)
415 POS(x, 0) = (top[x] + 3 * dc + 2) >> 2;
416 for (y = 1; y <
size; y++)
417 POS(0, y) = (left[y] + 3 * dc + 2) >> 2;
424 ptrdiff_t
stride,
int c_idx,
432 static const int intra_pred_angle[] = {
433 32, 26, 21, 17, 13, 9, 5, 2, 0, -2, -5, -9, -13, -17, -21, -26, -32,
434 -26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32
436 static const int inv_angle[] = {
437 -4096, -1638, -910, -630, -482, -390, -315, -256, -315, -390, -482,
438 -630, -910, -1638, -4096
441 int angle = intra_pred_angle[mode - 2];
445 int last = (size * angle) >> 5;
449 if (angle < 0 && last < -1) {
450 for (x = 0; x <=
size; x += 4)
452 for (x = last; x <= -1; x++)
453 ref_tmp[x] = left[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)];
457 for (y = 0; y <
size; y++) {
458 int idx = ((y + 1) * angle) >> 5;
459 int fact = ((y + 1) * angle) & 31;
461 for (x = 0; x <
size; x += 4) {
462 POS(x , y) = ((32 - fact) * ref[x + idx + 1] +
463 fact * ref[x + idx + 2] + 16) >> 5;
464 POS(x + 1, y) = ((32 - fact) * ref[x + 1 + idx + 1] +
465 fact * ref[x + 1 + idx + 2] + 16) >> 5;
466 POS(x + 2, y) = ((32 - fact) * ref[x + 2 + idx + 1] +
467 fact * ref[x + 2 + idx + 2] + 16) >> 5;
468 POS(x + 3, y) = ((32 - fact) * ref[x + 3 + idx + 1] +
469 fact * ref[x + 3 + idx + 2] + 16) >> 5;
472 for (x = 0; x <
size; x += 4)
476 if (mode == 26 && c_idx == 0 && size < 32) {
477 for (y = 0; y <
size; y++)
482 if (angle < 0 && last < -1) {
483 for (x = 0; x <=
size; x += 4)
485 for (x = last; x <= -1; x++)
486 ref_tmp[x] = top[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)];
490 for (x = 0; x <
size; x++) {
491 int idx = ((x + 1) * angle) >> 5;
492 int fact = ((x + 1) * angle) & 31;
494 for (y = 0; y <
size; y++) {
495 POS(x, y) = ((32 - fact) * ref[y + idx + 1] +
496 fact * ref[y + idx + 2] + 16) >> 5;
499 for (y = 0; y <
size; y++)
500 POS(x, y) = ref[y + idx + 1];
503 if (mode == 10 && c_idx == 0 && size < 32) {
504 for (x = 0; x <
size; x += 4) {
542 #undef EXTEND_LEFT_CIP 543 #undef EXTEND_RIGHT_CIP 545 #undef EXTEND_DOWN_CIP 551 #undef MIN_TB_ADDR_ZS
#define MIN_TB_ADDR_ZS(x, y)
#define EXTEND_RIGHT_CIP(ptr, start, length)
#define EXTEND(ptr, val, len)
static void FUNC() pred_angular_2(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
static void FUNC() pred_angular_3(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
#define PRED_PLANAR(size)
static void FUNC() pred_dc(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int log2_size, int c_idx)
#define EXTEND_DOWN_CIP(ptr, start, length)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
static av_always_inline void FUNC() intra_pred(HEVCContext *s, int x0, int y0, int log2_size, int c_idx)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> dc
static int ref[MAX_W *MAX_W]
#define EXTEND_UP_CIP(ptr, start, length)
static av_always_inline void FUNC() pred_planar(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int trafo_size)
#define EXTEND_LEFT_CIP(ptr, start, length)
static void FUNC() pred_angular_1(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
static av_always_inline void FUNC() pred_angular(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int c_idx, int mode, int size)
mode
Use these values in ebur128_init (or'ed).
static void FUNC() pred_angular_0(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
#define PIXEL_SPLAT_X4(x)