FFmpeg  2.8.17
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
lagarith.c
Go to the documentation of this file.
1 /*
2  * Lagarith lossless decoder
3  * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Lagarith lossless decoder
25  * @author Nathan Caldwell
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "mathops.h"
33 #include "huffyuvdsp.h"
34 #include "lagarithrac.h"
35 #include "thread.h"
36 
38  FRAME_RAW = 1, /**< uncompressed */
39  FRAME_U_RGB24 = 2, /**< unaligned RGB24 */
40  FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */
41  FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */
42  FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */
43  FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */
44  FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
45  FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */
46  FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */
47  FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */
48  FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */
49 };
50 
51 typedef struct LagarithContext {
54  int zeros; /**< number of consecutive zero bytes encountered */
55  int zeros_rem; /**< number of zero bytes remaining to output */
60 
61 /**
62  * Compute the 52bit mantissa of 1/(double)denom.
63  * This crazy format uses floats in an entropy coder and we have to match x86
64  * rounding exactly, thus ordinary floats aren't portable enough.
65  * @param denom denominator
66  * @return 52bit mantissa
67  * @see softfloat_mul
68  */
69 static uint64_t softfloat_reciprocal(uint32_t denom)
70 {
71  int shift = av_log2(denom - 1) + 1;
72  uint64_t ret = (1ULL << 52) / denom;
73  uint64_t err = (1ULL << 52) - ret * denom;
74  ret <<= shift;
75  err <<= shift;
76  err += denom / 2;
77  return ret + err / denom;
78 }
79 
80 /**
81  * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
82  * Used in combination with softfloat_reciprocal computes x/(double)denom.
83  * @param x 32bit integer factor
84  * @param mantissa mantissa of f with exponent 0
85  * @return 32bit integer value (x*f)
86  * @see softfloat_reciprocal
87  */
88 static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
89 {
90  uint64_t l = x * (mantissa & 0xffffffff);
91  uint64_t h = x * (mantissa >> 32);
92  h += l >> 32;
93  l &= 0xffffffff;
94  l += 1 << av_log2(h >> 21);
95  h += l >> 32;
96  return h >> 20;
97 }
98 
99 static uint8_t lag_calc_zero_run(int8_t x)
100 {
101  return (x * 2) ^ (x >> 7);
102 }
103 
104 static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
105 {
106  static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
107  int i;
108  int bit = 0;
109  int bits = 0;
110  int prevbit = 0;
111  unsigned val;
112 
113  for (i = 0; i < 7; i++) {
114  if (prevbit && bit)
115  break;
116  prevbit = bit;
117  bit = get_bits1(gb);
118  if (bit && !prevbit)
119  bits += series[i];
120  }
121  bits--;
122  if (bits < 0 || bits > 31) {
123  *value = 0;
124  return -1;
125  } else if (bits == 0) {
126  *value = 0;
127  return 0;
128  }
129 
130  val = get_bits_long(gb, bits);
131  val |= 1U << bits;
132 
133  *value = val - 1;
134 
135  return 0;
136 }
137 
139 {
140  int i, j, scale_factor;
141  unsigned prob, cumulative_target;
142  unsigned cumul_prob = 0;
143  unsigned scaled_cumul_prob = 0;
144 
145  rac->prob[0] = 0;
146  rac->prob[257] = UINT_MAX;
147  /* Read probabilities from bitstream */
148  for (i = 1; i < 257; i++) {
149  if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
150  av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
151  return -1;
152  }
153  if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
154  av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
155  return -1;
156  }
157  cumul_prob += rac->prob[i];
158  if (!rac->prob[i]) {
159  if (lag_decode_prob(gb, &prob)) {
160  av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
161  return -1;
162  }
163  if (prob > 256 - i)
164  prob = 256 - i;
165  for (j = 0; j < prob; j++)
166  rac->prob[++i] = 0;
167  }
168  }
169 
170  if (!cumul_prob) {
171  av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
172  return -1;
173  }
174 
175  /* Scale probabilities so cumulative probability is an even power of 2. */
176  scale_factor = av_log2(cumul_prob);
177 
178  if (cumul_prob & (cumul_prob - 1)) {
179  uint64_t mul = softfloat_reciprocal(cumul_prob);
180  for (i = 1; i <= 128; i++) {
181  rac->prob[i] = softfloat_mul(rac->prob[i], mul);
182  scaled_cumul_prob += rac->prob[i];
183  }
184  if (scaled_cumul_prob <= 0) {
185  av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
186  return AVERROR_INVALIDDATA;
187  }
188  for (; i < 257; i++) {
189  rac->prob[i] = softfloat_mul(rac->prob[i], mul);
190  scaled_cumul_prob += rac->prob[i];
191  }
192 
193  scale_factor++;
194  if (scale_factor >= 32U)
195  return AVERROR_INVALIDDATA;
196  cumulative_target = 1U << scale_factor;
197 
198  if (scaled_cumul_prob > cumulative_target) {
199  av_log(rac->avctx, AV_LOG_ERROR,
200  "Scaled probabilities are larger than target!\n");
201  return -1;
202  }
203 
204  scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
205 
206  for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
207  if (rac->prob[i]) {
208  rac->prob[i]++;
209  scaled_cumul_prob--;
210  }
211  /* Comment from reference source:
212  * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
213  * // since the compression change is negligible and fixing it
214  * // breaks backwards compatibility
215  * b =- (signed int)b;
216  * b &= 0xFF;
217  * } else {
218  * b++;
219  * b &= 0x7f;
220  * }
221  */
222  }
223  }
224 
225  if (scale_factor > 23)
226  return AVERROR_INVALIDDATA;
227 
228  rac->scale = scale_factor;
229 
230  /* Fill probability array with cumulative probability for each symbol. */
231  for (i = 1; i < 257; i++)
232  rac->prob[i] += rac->prob[i - 1];
233 
234  return 0;
235 }
236 
238  uint8_t *diff, int w, int *left,
239  int *left_top)
240 {
241  /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
242  * However the &0xFF on the gradient predictor yealds incorrect output
243  * for lagarith.
244  */
245  int i;
246  uint8_t l, lt;
247 
248  l = *left;
249  lt = *left_top;
250 
251  for (i = 0; i < w; i++) {
252  l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
253  lt = src1[i];
254  dst[i] = l;
255  }
256 
257  *left = l;
258  *left_top = lt;
259 }
260 
262  int width, int stride, int line)
263 {
264  int L, TL;
265 
266  if (!line) {
267  /* Left prediction only for first line */
268  L = l->hdsp.add_hfyu_left_pred(buf, buf, width, 0);
269  } else {
270  /* Left pixel is actually prev_row[width] */
271  L = buf[width - stride - 1];
272 
273  if (line == 1) {
274  /* Second line, left predict first pixel, the rest of the line is median predicted
275  * NOTE: In the case of RGB this pixel is top predicted */
276  TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
277  } else {
278  /* Top left is 2 rows back, last pixel */
279  TL = buf[width - (2 * stride) - 1];
280  }
281 
282  add_lag_median_prediction(buf, buf - stride, buf,
283  width, &L, &TL);
284  }
285 }
286 
288  int width, int stride, int line,
289  int is_luma)
290 {
291  int L, TL;
292 
293  if (!line) {
294  L= buf[0];
295  if (is_luma)
296  buf[0] = 0;
297  l->hdsp.add_hfyu_left_pred(buf, buf, width, 0);
298  if (is_luma)
299  buf[0] = L;
300  return;
301  }
302  if (line == 1) {
303  const int HEAD = is_luma ? 4 : 2;
304  int i;
305 
306  L = buf[width - stride - 1];
307  TL = buf[HEAD - stride - 1];
308  for (i = 0; i < HEAD; i++) {
309  L += buf[i];
310  buf[i] = L;
311  }
312  for (; i < width; i++) {
313  L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
314  TL = buf[i - stride];
315  buf[i] = L;
316  }
317  } else {
318  TL = buf[width - (2 * stride) - 1];
319  L = buf[width - stride - 1];
320  l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL);
321  }
322 }
323 
325  uint8_t *dst, int width, int stride,
326  int esc_count)
327 {
328  int i = 0;
329  int ret = 0;
330 
331  if (!esc_count)
332  esc_count = -1;
333 
334  /* Output any zeros remaining from the previous run */
335 handle_zeros:
336  if (l->zeros_rem) {
337  int count = FFMIN(l->zeros_rem, width - i);
338  memset(dst + i, 0, count);
339  i += count;
340  l->zeros_rem -= count;
341  }
342 
343  while (i < width) {
344  dst[i] = lag_get_rac(rac);
345  ret++;
346 
347  if (dst[i])
348  l->zeros = 0;
349  else
350  l->zeros++;
351 
352  i++;
353  if (l->zeros == esc_count) {
354  int index = lag_get_rac(rac);
355  ret++;
356 
357  l->zeros = 0;
358 
359  l->zeros_rem = lag_calc_zero_run(index);
360  goto handle_zeros;
361  }
362  }
363  return ret;
364 }
365 
367  const uint8_t *src, const uint8_t *src_end,
368  int width, int esc_count)
369 {
370  int i = 0;
371  int count;
372  uint8_t zero_run = 0;
373  const uint8_t *src_start = src;
374  uint8_t mask1 = -(esc_count < 2);
375  uint8_t mask2 = -(esc_count < 3);
376  uint8_t *end = dst + (width - 2);
377 
378  avpriv_request_sample(l->avctx, "zero_run_line");
379 
380  memset(dst, 0, width);
381 
382 output_zeros:
383  if (l->zeros_rem) {
384  count = FFMIN(l->zeros_rem, width - i);
385  if (end - dst < count) {
386  av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
387  return AVERROR_INVALIDDATA;
388  }
389 
390  memset(dst, 0, count);
391  l->zeros_rem -= count;
392  dst += count;
393  }
394 
395  while (dst < end) {
396  i = 0;
397  while (!zero_run && dst + i < end) {
398  i++;
399  if (i+2 >= src_end - src)
400  return AVERROR_INVALIDDATA;
401  zero_run =
402  !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
403  }
404  if (zero_run) {
405  zero_run = 0;
406  i += esc_count;
407  memcpy(dst, src, i);
408  dst += i;
409  l->zeros_rem = lag_calc_zero_run(src[i]);
410 
411  src += i + 1;
412  goto output_zeros;
413  } else {
414  memcpy(dst, src, i);
415  src += i;
416  dst += i;
417  }
418  }
419  return src - src_start;
420 }
421 
422 
423 
425  int width, int height, int stride,
426  const uint8_t *src, int src_size)
427 {
428  int i = 0;
429  int read = 0;
430  uint32_t length;
431  uint32_t offset = 1;
432  int esc_count;
433  GetBitContext gb;
434  lag_rac rac;
435  const uint8_t *src_end = src + src_size;
436  int ret;
437 
438  rac.avctx = l->avctx;
439  l->zeros = 0;
440 
441  if(src_size < 2)
442  return AVERROR_INVALIDDATA;
443 
444  esc_count = src[0];
445  if (esc_count < 4) {
446  length = width * height;
447  if(src_size < 5)
448  return AVERROR_INVALIDDATA;
449  if (esc_count && AV_RL32(src + 1) < length) {
450  length = AV_RL32(src + 1);
451  offset += 4;
452  }
453 
454  if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
455  return ret;
456 
457  if (lag_read_prob_header(&rac, &gb) < 0)
458  return -1;
459 
460  ff_lag_rac_init(&rac, &gb, length - stride);
461 
462  for (i = 0; i < height; i++)
463  read += lag_decode_line(l, &rac, dst + (i * stride), width,
464  stride, esc_count);
465 
466  if (read > length)
468  "Output more bytes than length (%d of %"PRIu32")\n", read,
469  length);
470  } else if (esc_count < 8) {
471  esc_count -= 4;
472  src ++;
473  src_size --;
474  if (esc_count > 0) {
475  /* Zero run coding only, no range coding. */
476  for (i = 0; i < height; i++) {
477  int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
478  src_end, width, esc_count);
479  if (res < 0)
480  return res;
481  src += res;
482  }
483  } else {
484  if (src_size < width * height)
485  return AVERROR_INVALIDDATA; // buffer not big enough
486  /* Plane is stored uncompressed */
487  for (i = 0; i < height; i++) {
488  memcpy(dst + (i * stride), src, width);
489  src += width;
490  }
491  }
492  } else if (esc_count == 0xff) {
493  /* Plane is a solid run of given value */
494  for (i = 0; i < height; i++)
495  memset(dst + i * stride, src[1], width);
496  /* Do not apply prediction.
497  Note: memset to 0 above, setting first value to src[1]
498  and applying prediction gives the same result. */
499  return 0;
500  } else {
502  "Invalid zero run escape code! (%#x)\n", esc_count);
503  return -1;
504  }
505 
506  if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
507  for (i = 0; i < height; i++) {
508  lag_pred_line(l, dst, width, stride, i);
509  dst += stride;
510  }
511  } else {
512  for (i = 0; i < height; i++) {
513  lag_pred_line_yuy2(l, dst, width, stride, i,
514  width == l->avctx->width);
515  dst += stride;
516  }
517  }
518 
519  return 0;
520 }
521 
522 /**
523  * Decode a frame.
524  * @param avctx codec context
525  * @param data output AVFrame
526  * @param data_size size of output data or 0 if no picture is returned
527  * @param avpkt input packet
528  * @return number of consumed bytes on success or negative if decode fails
529  */
531  void *data, int *got_frame, AVPacket *avpkt)
532 {
533  const uint8_t *buf = avpkt->data;
534  unsigned int buf_size = avpkt->size;
535  LagarithContext *l = avctx->priv_data;
536  ThreadFrame frame = { .f = data };
537  AVFrame *const p = data;
538  uint8_t frametype = 0;
539  uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
540  uint32_t offs[4];
541  uint8_t *srcs[4], *dst;
542  int i, j, planes = 3;
543  int ret;
544 
545  p->key_frame = 1;
546 
547  frametype = buf[0];
548 
549  offset_gu = AV_RL32(buf + 1);
550  offset_bv = AV_RL32(buf + 5);
551 
552  switch (frametype) {
553  case FRAME_SOLID_RGBA:
554  avctx->pix_fmt = AV_PIX_FMT_RGB32;
555  case FRAME_SOLID_GRAY:
556  if (frametype == FRAME_SOLID_GRAY)
557  if (avctx->bits_per_coded_sample == 24) {
558  avctx->pix_fmt = AV_PIX_FMT_RGB24;
559  } else {
560  avctx->pix_fmt = AV_PIX_FMT_0RGB32;
561  planes = 4;
562  }
563 
564  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
565  return ret;
566 
567  dst = p->data[0];
568  if (frametype == FRAME_SOLID_RGBA) {
569  for (j = 0; j < avctx->height; j++) {
570  for (i = 0; i < avctx->width; i++)
571  AV_WN32(dst + i * 4, offset_gu);
572  dst += p->linesize[0];
573  }
574  } else {
575  for (j = 0; j < avctx->height; j++) {
576  memset(dst, buf[1], avctx->width * planes);
577  dst += p->linesize[0];
578  }
579  }
580  break;
581  case FRAME_SOLID_COLOR:
582  if (avctx->bits_per_coded_sample == 24) {
583  avctx->pix_fmt = AV_PIX_FMT_RGB24;
584  } else {
585  avctx->pix_fmt = AV_PIX_FMT_RGB32;
586  offset_gu |= 0xFFU << 24;
587  }
588 
589  if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
590  return ret;
591 
592  dst = p->data[0];
593  for (j = 0; j < avctx->height; j++) {
594  for (i = 0; i < avctx->width; i++)
595  if (avctx->bits_per_coded_sample == 24) {
596  AV_WB24(dst + i * 3, offset_gu);
597  } else {
598  AV_WN32(dst + i * 4, offset_gu);
599  }
600  dst += p->linesize[0];
601  }
602  break;
603  case FRAME_ARITH_RGBA:
604  avctx->pix_fmt = AV_PIX_FMT_RGB32;
605  planes = 4;
606  offset_ry += 4;
607  offs[3] = AV_RL32(buf + 9);
608  case FRAME_ARITH_RGB24:
609  case FRAME_U_RGB24:
610  if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
611  avctx->pix_fmt = AV_PIX_FMT_RGB24;
612 
613  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
614  return ret;
615 
616  offs[0] = offset_bv;
617  offs[1] = offset_gu;
618  offs[2] = offset_ry;
619 
620  l->rgb_stride = FFALIGN(avctx->width, 16);
622  l->rgb_stride * avctx->height * planes + 1);
623  if (!l->rgb_planes) {
624  av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
625  return AVERROR(ENOMEM);
626  }
627  for (i = 0; i < planes; i++)
628  srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
629  for (i = 0; i < planes; i++)
630  if (buf_size <= offs[i]) {
631  av_log(avctx, AV_LOG_ERROR,
632  "Invalid frame offsets\n");
633  return AVERROR_INVALIDDATA;
634  }
635 
636  for (i = 0; i < planes; i++)
637  lag_decode_arith_plane(l, srcs[i],
638  avctx->width, avctx->height,
639  -l->rgb_stride, buf + offs[i],
640  buf_size - offs[i]);
641  dst = p->data[0];
642  for (i = 0; i < planes; i++)
643  srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
644  for (j = 0; j < avctx->height; j++) {
645  for (i = 0; i < avctx->width; i++) {
646  uint8_t r, g, b, a;
647  r = srcs[0][i];
648  g = srcs[1][i];
649  b = srcs[2][i];
650  r += g;
651  b += g;
652  if (frametype == FRAME_ARITH_RGBA) {
653  a = srcs[3][i];
654  AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
655  } else {
656  dst[i * 3 + 0] = r;
657  dst[i * 3 + 1] = g;
658  dst[i * 3 + 2] = b;
659  }
660  }
661  dst += p->linesize[0];
662  for (i = 0; i < planes; i++)
663  srcs[i] += l->rgb_stride;
664  }
665  break;
666  case FRAME_ARITH_YUY2:
667  avctx->pix_fmt = AV_PIX_FMT_YUV422P;
668 
669  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
670  return ret;
671 
672  if (offset_ry >= buf_size ||
673  offset_gu >= buf_size ||
674  offset_bv >= buf_size) {
675  av_log(avctx, AV_LOG_ERROR,
676  "Invalid frame offsets\n");
677  return AVERROR_INVALIDDATA;
678  }
679 
680  lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
681  p->linesize[0], buf + offset_ry,
682  buf_size - offset_ry);
683  lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
684  avctx->height, p->linesize[1],
685  buf + offset_gu, buf_size - offset_gu);
686  lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
687  avctx->height, p->linesize[2],
688  buf + offset_bv, buf_size - offset_bv);
689  break;
690  case FRAME_ARITH_YV12:
691  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
692 
693  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
694  return ret;
695  if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) {
696  return AVERROR_INVALIDDATA;
697  }
698 
699  if (offset_ry >= buf_size ||
700  offset_gu >= buf_size ||
701  offset_bv >= buf_size) {
702  av_log(avctx, AV_LOG_ERROR,
703  "Invalid frame offsets\n");
704  return AVERROR_INVALIDDATA;
705  }
706 
707  lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
708  p->linesize[0], buf + offset_ry,
709  buf_size - offset_ry);
710  lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
711  (avctx->height + 1) / 2, p->linesize[2],
712  buf + offset_gu, buf_size - offset_gu);
713  lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
714  (avctx->height + 1) / 2, p->linesize[1],
715  buf + offset_bv, buf_size - offset_bv);
716  break;
717  default:
718  av_log(avctx, AV_LOG_ERROR,
719  "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
720  return AVERROR_PATCHWELCOME;
721  }
722 
723  *got_frame = 1;
724 
725  return buf_size;
726 }
727 
729 {
730  LagarithContext *l = avctx->priv_data;
731  l->avctx = avctx;
732 
734 
735  return 0;
736 }
737 
739 {
740  LagarithContext *l = avctx->priv_data;
741 
742  av_freep(&l->rgb_planes);
743 
744  return 0;
745 }
746 
748  .name = "lagarith",
749  .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
750  .type = AVMEDIA_TYPE_VIDEO,
751  .id = AV_CODEC_ID_LAGARITH,
752  .priv_data_size = sizeof(LagarithContext),
754  .close = lag_decode_end,
757 };
AVCodecContext * avctx
Definition: lagarithrac.h:40
static uint8_t lag_get_rac(lag_rac *l)
Decode a single byte from the compressed plane described by *l.
Definition: lagarithrac.h:73
const char const char void * val
Definition: avisynth_c.h:634
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:171
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
void ff_lag_rac_init(lag_rac *l, GetBitContext *gb, int length)
Definition: lagarithrac.c:33
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:69
const char * g
Definition: vf_curves.c:108
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
#define avpriv_request_sample(...)
int size
Definition: avcodec.h:1434
const char * b
Definition: vf_curves.c:109
av_cold void ff_huffyuvdsp_init(HuffYUVDSPContext *c)
Definition: huffyuvdsp.c:108
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1732
AVCodec.
Definition: avcodec.h:3482
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst, int width, int height, int stride, const uint8_t *src, int src_size)
Definition: lagarith.c:424
int zeros
number of consecutive zero bytes encountered
Definition: lagarith.c:54
#define FFALIGN(x, a)
Definition: common.h:97
AVCodec ff_lagarith_decoder
Definition: lagarith.c:747
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst, const uint8_t *src, const uint8_t *src_end, int width, int esc_count)
Definition: lagarith.c:366
Lagarith range decoder.
uint8_t bits
Definition: crc.c:295
uint8_t
#define av_cold
Definition: attributes.h:74
solid grayscale color frame
Definition: lagarith.c:42
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
static void lag_pred_line(LagarithContext *l, uint8_t *buf, int width, int stride, int line)
Definition: lagarith.c:261
Multithreading support functions.
int zeros_rem
number of zero bytes remaining to output
Definition: lagarith.c:55
static AVFrame * frame
unsigned scale
Number of bits of precision in range.
Definition: lagarithrac.h:43
uint8_t * data
Definition: avcodec.h:1433
bitstream reader API header.
void(* add_hfyu_median_pred)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, intptr_t w, int *left, int *left_top)
Definition: huffyuvdsp.h:40
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:3006
#define av_log(a,...)
#define U(x)
Definition: vp56_arith.h:37
uncompressed
Definition: lagarith.c:38
LagarithFrameType
Definition: lagarith.c:37
arithmetic coded RGB24
Definition: lagarith.c:41
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define AVERROR(e)
Definition: error.h:43
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top)
Definition: lagarith.c:237
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:178
const char * r
Definition: vf_curves.c:107
AVCodecContext * avctx
Definition: lagarith.c:52
Definition: graph2dot.c:48
GLsizei GLsizei * length
Definition: opengl_enc.c:115
const char * name
Name of the codec implementation.
Definition: avcodec.h:3489
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
GLsizei count
Definition: opengl_enc.c:109
int(* add_hfyu_left_pred)(uint8_t *dst, const uint8_t *src, intptr_t w, int left)
Definition: huffyuvdsp.h:43
Libavcodec external API header.
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:920
static av_cold int lag_decode_init(AVCodecContext *avctx)
Definition: lagarith.c:728
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:71
arithmetic coded YV12
Definition: lagarith.c:47
int rgb_planes_allocated
Definition: lagarith.c:57
static uint64_t softfloat_reciprocal(uint32_t denom)
Compute the 52bit mantissa of 1/(double)denom.
Definition: lagarith.c:69
obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) ...
Definition: lagarith.c:44
#define FFMIN(a, b)
Definition: common.h:92
int width
picture width / height.
Definition: avcodec.h:1691
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
arithmetic coded YUY2
Definition: lagarith.c:40
static int lag_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Decode a frame.
Definition: lagarith.c:530
#define AV_WB24(p, d)
Definition: intreadwrite.h:450
#define AV_RL32
Definition: intreadwrite.h:146
static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
Definition: lagarith.c:104
#define L(x)
Definition: vp56_arith.h:36
#define av_log2
Definition: intmath.h:100
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define src1
Definition: h264pred.c:139
static int lag_decode_line(LagarithContext *l, lag_rac *rac, uint8_t *dst, int width, int stride, int esc_count)
Definition: lagarith.c:324
AVS_Value src
Definition: avisynth_c.h:482
uint32_t prob[258]
Table of cumulative probability for each symbol.
Definition: lagarithrac.h:50
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:199
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:446
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
(uint32_t)(x*f), where f has the given mantissa, and exponent 0 Used in combination with softfloat_re...
Definition: lagarith.c:88
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
main external API structure.
Definition: avcodec.h:1512
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:361
void * buf
Definition: avisynth_c.h:553
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:305
BYTE int const BYTE int int int height
Definition: avisynth_c.h:676
int index
Definition: gxfenc.c:89
#define mid_pred
Definition: mathops.h:95
static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
Definition: lagarith.c:138
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:338
HuffYUVDSPContext hdsp
Definition: lagarith.c:53
uint8_t * rgb_planes
Definition: lagarith.c:56
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
static int decode(AVCodecContext *avctx, void *data, int *got_sub, AVPacket *avpkt)
Definition: ccaption_dec.c:521
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:511
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:67
static av_cold int lag_decode_end(AVCodecContext *avctx)
Definition: lagarith.c:738
#define AV_WN32(p, v)
Definition: intreadwrite.h:376
solid non-grayscale color frame
Definition: lagarith.c:43
#define MKBETAG(a, b, c, d)
Definition: common.h:342
void * priv_data
Definition: avcodec.h:1554
static uint8_t lag_calc_zero_run(int8_t x)
Definition: lagarith.c:99
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf, int width, int stride, int line, int is_luma)
Definition: lagarith.c:287
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:237
solid RGBA color frame
Definition: lagarith.c:46
arithmetic coded RGBA
Definition: lagarith.c:45
reduced resolution YV12 frame
Definition: lagarith.c:48
unaligned RGB24
Definition: lagarith.c:39
#define av_freep(p)
#define stride
This structure stores compressed data.
Definition: avcodec.h:1410
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:857
for(j=16;j >0;--j)
#define AV_PIX_FMT_0RGB32
Definition: pixfmt.h:365
static int width